EXPERIMENT 1

DETERMINATION OF WATER CONTENT

Purpose:

This test is performed to determine the water (moisture) content of soils.

The water content is the ratio, expressed as a percentage, of the mass of "pore" or "free" water in a given mass of soil to the mass of the dry soil solids.

The Theoretical Part:

For many soils, the water content may be an extremely important index used for establishing the relationship between the way a soil behaves and its properties. The consistency of a fine-grained soil largely depends on its water content. The water content is also used in expressing the phase relationships of air, water, and solids in a given volume of soil.

Most laboratory tests in soil mechanics require the determination of water content.
Water content is defined as

weight of water present in a given soil mass

W =

weight of dry soil

Water content is usually expressed in percent.

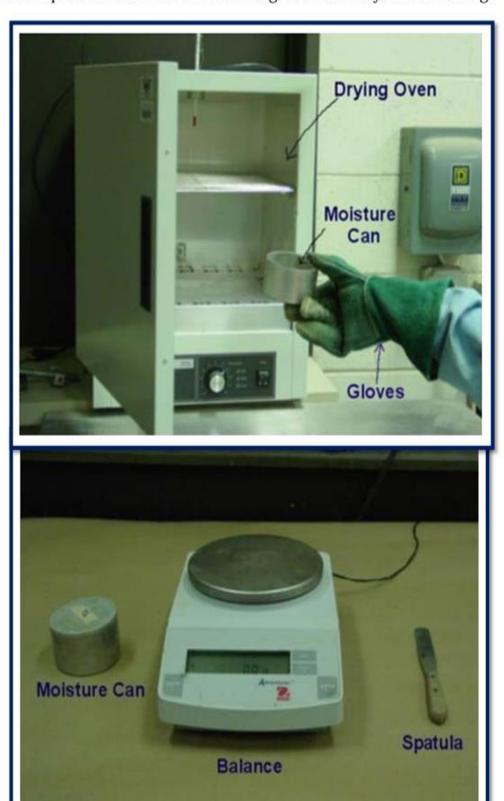
For better results, the minimum size of the most soil specimens should be approximately as given in Table 2-1.

Maximum Particle Size in the Soil (mm)	U.S Sieve No.	Minimum Mass of Soil Sample (g)
0.425	40	20
2.0	10	50
4.75	4	100
9.5	3/8 in.	500
19.0	3/4 in.	2500

Table 1-1. Minimum Size of Moist Soil Samples to Determine Water Content

Equipment And Tools:

1. Moisture can(s).


Moisture cans are available in various sizes [for example, 2-in. (50,S mm) diameter and 7 / $_{8}$ in. (22.2 mm) high, 3.5-in. (S8.9 mm) diameter and 2 in. (50.S mm) high).

2. Oven with temperature control.

For drying, the temperature of oven is generally kept between 105° C to 110° C. higher temperature should be avoided to prevent the burning of organic matter in the soil.

3. Balance.

The balance should have a readability of 0.01~g for specimens having amass of 200 g or less. If the specimen has a mass of over 200 g, the readability should be 0.1~g.

Procedure:

- 1. Determine the mass (g) of the empty moisture can plus its cap (W1)' and also record the number.
- 2. Place a sample of representative moist soil in the can. Close the can with its cap toavoid loss of moisture.
- 3. Determine the combined mass (g) of the closed can and moist soil (W2).
- 4. Remove the cap from the top of the can and place it on the bottom (of the can).
- Put the can (Step 4) in the oven to dry the soil to a constant weight. In most cases,24 hours of drying is enough.
- 6. Determine the combined mass (g) of the dry soil sample plus the can and its cap (W3).

Calculation:

- 1. Calculate the mass of moisture = W2 W3
- 2. Calculate the mass of dry soil = W3 WI
- 3. Calculate the water content

$$W(\%) = \frac{W_2 - W_3}{W_3 - W_1} \times 100$$

Standard Results:

Typical values of water content for various types of natural soils in a saturated state are shown in **Table 1-2**.

Standard Reference:

ASTM D 2216 - Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil, Rock, and Soil-Aggregate Mixtures

Soil	Natural Water Content in a Saturated State (%)
Loose uniform sand	25–30
Dense uniform sand	12–16
Loose angular-grained silty sand	25
Dense angular-grained silty sand	15
Stiff clay	20
Soft clay	30–50
Soft organic clay	80–130
Glacial till	10

Table 1-2. Typical Values of Water Content in a ,Saturated State

Discussion and Conclusions:

- a. Most natural soils, which are sandy and gravelly in nature, may have water contents up to about 15 to 20%. In natural fine-grained (silty or clayey) soils, water contents up to about 50 to 80% can be found. However, peat and highly organic soils with water contents up to about 500% are not uncommon.
- b. Some organic soils may decompose during oven drying at 110°C. An oven drying temperature of 11° may be too high for soils containing gypsum, as this material slowly dehydrates. According to ASTM, 'a drying temperature of 60°C is more appropriate for such soils.
- c. Cooling the dry soil after oven drying (Step 5) in a desiccators is recommended. It prevents absorption of moisture from the atmosphere .