

EXPERIMENTS(2) SECOND CLASS

1 ND SEMPESTER

PHYSICAL CHEMISTRY

LABORATORY

By

Eng. Ghasaq Abbas Noor

Experiment No. (2): Saponification of Ethyl Acetate

Object of Experiment:

To calculate the rate constant of the reaction and half of time.

Theory:

Ester Saponification in the base solution as in the following equation: -

$$CH_3COOC_2H_5 + NaOH \longrightarrow CH_3COONa + C_2H_5OH$$

This reaction is example of second _degree order because the speed of the reaction depends on concentration of each of the ester and base and it is expressed mathematically: -

$$\frac{dx}{dt} = k (a-x)(b-x)$$

Where:-

a = molary concentration of ethyl acetate.

b = molary concentration of (NaOH).

x = volume of reactant.

t = time.

To calculate the rate constant of the reaction if a = b, the following equation can be used: -

$$\frac{1}{A_t} - \frac{1}{A_0} = Kt$$

• or from equation:

$$k = \frac{1}{t} \times \frac{x}{a(a-x)}$$

Procedure:-

- 1- Place 25 ml from (0.05N) of ethyl acetate in conical flask (1).
- 2- Place 25 ml from (0.05N) of NaOH in conical flask (2).
- 1- Fill the burette with (0.025N) of HCl.
- 2- Add the solution in flask (1) to the solution in flask (2) then record the time (Timer).
- 3- Take 10 ml from the mixture in step (4), and add to it several drops of ph.ph. as an indicator.
 - 4- Add (0.025N) of HCl drop by drop from the burette until the pink color just disappear then record the quantity in ml of (0.025N) of HCl solution used.
 - 5- Repeat the step (5 and 6) every 5 minutes.

Calculation:-

1- Record readings in the table as following:-

Time (min.)	Volume of HCl (0.025 N)		
0	1 st reading from burette		
5	2 nd reading from burette		
10	3 rd reading from burette		

Al-Mustaqbal University College of Engineering and Engineering Technologies

Department of Chemical Engineering and Petroleum Industries

	1 et deum must res			
15	4 th reading from burette			

2- At t = 0 min. (initial time)

$$\frac{\text{HCl}}{N * V_{\text{burette}}} = N * V_{\text{NaOH}}$$

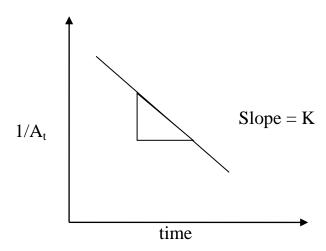
$$0.025 * V_{\text{burette}} = 0.05 * V_{\text{NaOH}}^{?} \longrightarrow V_{\text{NaOH}} = \bigcirc$$

3- At t = 5 min.

Calculate the rate constant of the reaction (k) theoretically at different points time by:-

$$\frac{1}{A_{t}} - \frac{1}{A_{o}} = K t$$

$$\frac{1}{0.05 * V_{residual}} - \frac{1}{V_{original} * 0.05} = K t$$


- 4- Calculate average rate constant of the reaction ($k_{average} = \sum k / no. of k$).
- 5- Calculate the half of time $(t_{1/2})$ theoretically by:

$$t_{0.5} = \frac{1}{A_0 * k_{\text{average}}}$$

6- Plot a curve between $(1/A_t)$ on the y-axis and time on the x-axis, calculate (k) from the curve, where the slope = k.

7- Calculate the half of time (t_{1/2}) graphically by: $t_{0.5} = \frac{1}{A_o * k_{from figure}}$

Discussion:

- 1- Why the reaction is second order?
- 2- Explain the reaction between reactants and discuss the results.

Al-Mustaqbal University College of Engineering and Engineering

Technologies Department of Chemical Engineering and Petroleum Industries	