

Department of Biomedical Engineering Digital Logic Design Lab / Second stage Lecturer: Dr. Hussam Jawad Kadhim AL_Janabi

irer: Dr. Hussam Jawad Kadnim AL_Jan Email: hussam.jawad@uomus.edu.iq

Experiment No. 4

Karnaugh map Simplification

1. Introduction

A Karnaugh map provides a systematic method for simplifying Boolean expressions and, if properly used, will produce the simplest SOP or POS expression possible, known as the minimum expression

1.1 Objective

The objective of using a **Karnaugh map** (**K-map**) is to simplify Boolean algebra expressions, which are used in digital logic design

1.2 Work Environment

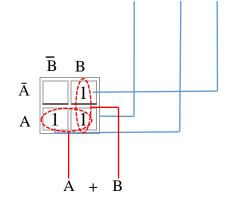
The CircuitMaker software is used to design and simulate logical circuits.

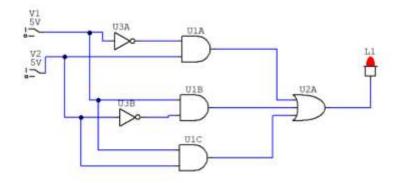
1.3 Theory

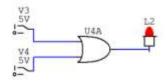
A **Karnaugh Map** (**K-map**) is a graphical tool used for simplifying Boolean algebra expressions in digital logic design. Developed by Maurice Karnaugh in 1953, it is an enhancement of the truth table method. K-maps are widely used in digital electronics to minimize logic functions, which helps in designing efficient digital circuits with fewer gates and reduced complexity.

Department of Biomedical Engineering Digital Logic Design Lab / Second stage

Lecturer: Dr. Hussam Jawad Kadhim AL_Janabi Email: hussam.jawad@uomus.edu.iq




Karnaugh Map SOP Minimization


1- Truth table

Input		Output	
A	В	Y	
0	0	0	- -
0	1	1	Ā.B
1	0	1	A.B —
1	1	1	4 ——A.B —
n expre	ession		- A D A D Ā

- 2- Minterm Boolean expression
- 3- Plotting 1s on map
- 4- Looping
- 5- The final result is A+B=Y

Department of Biomedical Engineering Digital Logic Design Lab / Second stage Lecturer: Dr. Hussam Jawad Kadhim AL_Janabi

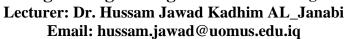
 ${\bf Email: hussam.jawad@uomus.edu.iq}$

Experiment

Using CircuitMaker, complete the following steps:

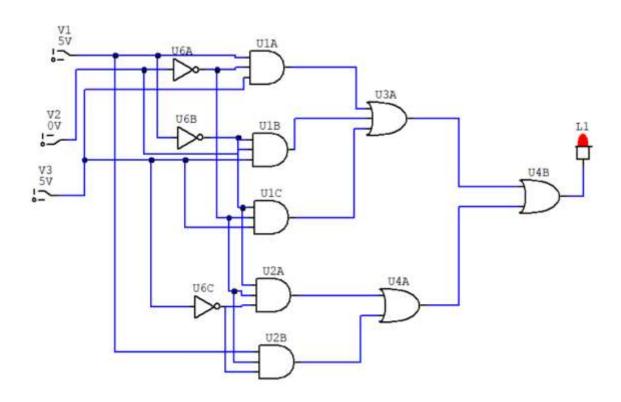
1- Generate the truth table for the standard SOP expression

$$A\overline{B}C + \overline{A}BC + \overline{A}\overline{B}C + \overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C}$$

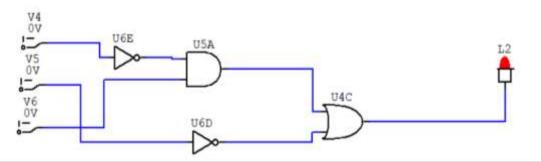

- 2- Draw the logic circuit using CircuitMaker
- 3- Simplify the standard SOP expression using the Karnaugh map.
- 4- Draw the simplified logic circuit.

Solution:

	output		
C	В	A	Y
0	0	1	1
0	0	0	
0	1	1	1
0	1	0	
1	0	1	1
1	0	0	1
1	1	1	
1	1	0	



Department of Biomedical Engineering Digital Logic Design Lab / Second stage



Before simplification

After simplification

Department of Biomedical Engineering Digital Logic Design Lab / Second stage Lecturer: Dr. Hussam Jawad Kadhim AL_Janabi Email: hussam.jawad@uomus.edu.iq

Discussion:

- 1- Why are Karnaugh map is important in logic circuit design?
- 2- Explain the two types of Karnaugh map.
- 3- Illustrate the SOP expression before and after simplification
- 4- Draw the logic circuit before and after simplification.