Republic of Iraq

Ministry of Higher Education

and Scientific Research

Al-Mustaqbal University College

Computer Engineering Techniques Department

Subject: Fundamentals of Electrical Engineering First Class Lecture One

By

Dr. Jaber Ghaib

MSc. Sarah Abbas

Department of Computer Engineering Techniques (Stage: 1) Fundamentals of Electrical Engineering Dr. Johan Chaib & M. Sc. Sarah Abbas

Dr.: Jaber Ghaib & M.Sc. Sarah Abbas Sarah Abbas@mustaqbal-college.edu.iq

۱ - النظام الدولي لوحدات القياس (SI)

صمم النظام الدولي للوحدات ليستخدم في جميع فروع العلم والتقنية.

ففي سن ١٩٧١ عند انعقاد المؤتمر العام الرابع عشر للمقاييس و الاوزان تم اختيار سبع كميات فيزيائية اساسية لتكون اساس النظام الدولي للوحدات.

الجدول (1) وحدات القياس الاساسية في النظام الدولي للوحدات (SI)

الرمز	وحدة القياس	الكمية الفيزيائية	ت
m	متر	الطول	١
kg	كيلو جرام	الكتلة	۲
S	ثانية	الزمن	٣
K	كلفين	درجة الحرارة	٤
A	امبير	شدة التيار الكهربائي	0
mol	مول	كمية المادة	٦
cd	شمعة	شدة الإضاءة	٧

في القياسات الفيزيائية تكون بعض قيم الكميات الفيزيائية صغيرة جداً، وبعضها الآخر كبير جداً، لذلك نستخدم معاملات العدد عشر في قياساتنا. فمثلاً العدد:

3560000000m=3.56*10⁹ m

 $0.000000492 \text{ s} = 4.92 * 10^{-7} \text{ s}$

الجدول (2) مضاعفات وكسور الوحدات

10 ¹	10^2	10^{3}	10^{6}	10^{9}	10^{12}	10^{15}	10^{18}	10^{21}	10^{24}	المعامل
دیکا	هكتو	كيلو	ميغا	غيغا	تيرا	بيتا	إكزا	زيتا	يوتا	الاسم
Da	h	k	m	G	T	P	Е	Z	Y	الرمز

10 ⁻²⁴	10 ⁻²¹	10 ⁻¹⁸	10 ⁻¹⁵	10 ⁻¹²	10 ⁻⁹	10 ⁻⁶	10^{-3}	10 ⁻²	10 ⁻¹	المعامل
يوكتو	زيبتو	اتو	فمتو	بيكو	نانو	مايكرو	ميللي	سنتي	ديسي	الاسم
y	Z	a	f	P	N	μ	M	C	D	الرمز

Department of Computer Engineering Techniques (Stage: 1) Fundamentals of Electrical Engineering Dr.: Jaber Ghaib & M.Sc. Sarah Abbas SarahAbbas@mustaqbal-college.edu.iq

WANTED TO THE STATE OF THE STAT

ملاحظة: الجزء المظلل شائع الاستخدام في التطبيقات العلمية.

$$1.27*10^9 \,\mathrm{W} = 1.27 \,\mathrm{GW}$$
 في حساب القدرة

$$\therefore$$
 1 min = $60s$

$$1s = \frac{1}{60} min$$

ن لتحويل دقيقتين الى ثوان

$$2\min = 2\min\left(\frac{60 \, s}{1 \, min}\right) = 120 \, s$$

Electrical Current and Electric ٢- التيار الكهربائي والشحنة الكهربائية Charge

شدة التيار الكهربائي (I):

ينشأ التيار الكهربائي بموصل ما اذا مرت شحنة (q) خلال مقطعه في زمن قدره (t) وتكون قيمة هذا التيار الثابت

$$I[A] = \frac{q[C]}{t[s]}$$

و الوحدة العملية للتيار هي الامبير [A] وهي من الوحدات الاساسية.

الشحنة الكهربائية (q):

وحدة قياس الشحنة الكهربائية هي الكولوم [C]، و الكولوم هو كمية الشحنة التي تمر خلال موصل ونشأ عنها تيار قيمته أمبير واحد في زمن قدره ثانية واحدة:

$$q[C] = n e$$

Department of Computer Engineering Techniques (Stage: 1) Fundamentals of Electrical Engineering Dr.: Jaber Ghaib & M.Sc. Sarah Abbas

Dr.: Jaber Ghaib & M.Sc. Sarah Abbas SarahAbbas@mustaqbal-college.edu.iq

الشحنة النوعية للألكترون (e):

من الثوابت الفيزيائية وهي اصغر كمية للشحنة، وتستخدم كوحدة طبيعية لقياس الشحنة، بمعنى ان اي كمية من الشحنات تكون مضاعفاً صحيحاً لهذه الكمية و قيمتها:

$$e = 1.6021892 * 10^{-19} C$$

Example 1: Find the charge in coulombs of $5.31*10^{20}$ electrons.

Solution: Charge of an electron is 1.602*10⁻¹⁹C.

The total charge is $5.31*10^{20}$ electrons * $1.602*10^{-19}$.

C/1 electrons= 85.1 C.

Example 2: an electric charge is flowing through conductor with value of (0.16 C) at every (64s). Calculate the current flow through the conductor with ampere.

Solution:

$$q = I.t$$

$$I = \frac{q}{t} = \frac{0.16}{64} = 2.5 \times 10^{-3} A$$

Example 3: calculate the time required $(4*10^{16})$ electrons to flow through conductor, if you know that the electric current equal to (5mA).

Solution:

Charge= No. of electrons* Charge of an electron

Department of Computer Engineering Techniques (Stage: 1) Fundamentals of Electrical Engineering Dr.: Jaher Ghaib & M.Sc. Sarah Abbas

Dr.: Jaber Ghaib & M.Sc. Sarah Abbas SarahAbbas@mustaqbal-college.edu.iq

$$q = n e$$

$$q = (4 \times 10^{16})(1.602 \times 10^{-19}) = 0.64 \times 10^{-2} C = 6.4 \, mC$$
$$t = \frac{q}{I} = \frac{6.4 \times 10^{-3}}{5 \times 10^{-3}} = 1.28 \, s$$

Example 4: If a current of 10 A flows for four minutes, find the quantity of electricity transferred.

Solution:

Quantity of electricity $q = I \times t$ coulombs.

$$I = 10 A$$

And $t = 4 \times 60 = 240$ s. Hence

$$q = 10 \times 240 = 2400 C$$

Example 5: calculate the number of electrons that produce electric charge of magnitude $(320\mu C)$

Solution:

$$n = \frac{q}{e} = \frac{320 \ \mu C}{1.6 \times 10^{-19} C} = \frac{320 \ \times 10^{-6}}{1.6 \times 10^{-19}} = 2 \times 10^{15} \ electrons$$

Department of Computer Engineering Techniques (Stage: 1) Fundamentals of Electrical Engineering

Dr.: Jaber Ghaib & M.Sc. Sarah Abbas SarahAbbas@mustaqbal-college.edu.iq

Example 6: Find the current must flow if 60 C is to be transferred in 4s.

Solution: Current is the rate of charge movement in coulombs per second. So,

$$I = q/t = 60C/4s = 15 C/s = 15 A.$$

Example 7: Each second 10^{17} electrons flow from right to left across a cross-section of a wire attached to the two terminals of a battery. Calculate the magnitude and the direction of current in the wire.

Solution:

$$I = \frac{q}{t} = \frac{n e}{t}$$

Here $n=10^{17}$; $e=1.6\times10^{-19}$ C; t=1 s

$$I = \frac{(10^{17}) \times (1.6 \times 10^{-19})}{1} = 1.6 \times 10^{-2} A$$

The direction of current is from left to right i.e. opposite the direction of electron flow.

Example 8: A 60 W light bulb has a current of 0.5A flowing through it. Calculate (i) the number of electrons passing through a cross-section of the filament (ii) the number of electrons that pass the cross-section in one hour.

Solution: (i).

$$I = \frac{q}{t} = \frac{n e}{t}$$

Department of Computer Engineering Techniques (Stage: 1) Fundamentals of Electrical Engineering

Dr.: Jaber Ghaib & M.Sc. Sarah Abbas SarahAbbas@mustaqbal-college.edu.iq

$$n = \frac{It}{e} = \frac{0.5 \times 1}{1.6 \times 10^{-19}} = 3.1 \times 10^{18} \text{ electrons/s}$$

(ii). Charge pass the cross-section in one hour is

$$q = I t = (0.5) \times (60 \times 60) = 1800 C$$

New,

$$n = \frac{q}{e} = \frac{1800}{1.6 \times 10^{-19}} = 1.1 \times 10^{22} \ electrons/hour$$

"- الجهد الكهربائي (Electric Potential)

فرق الجهد الكهربائي (V) بين نقطتين هو الشغل (W) أو الطاقة اللازمة لنقل شحنة كهربائية (q) بين النقطتين. ووحدة قياسه الفولت [V].

$$V[V] = \frac{W[J]}{q[C]}$$

$$V = \frac{J}{C} = \frac{W.s}{A.s} = \frac{V.A.s}{A.s}$$

Example 9: Find V_{ab} , the voltage drop from point a to point b, when positive charge 16C moving from point b to point a requires 0.8J.

Solution:

$$V_{ab} = W_{ab} / Q = 0.8/16 = 0.05 V.$$

Department of Computer Engineering Techniques (Stage: 1) Fundamentals of Electrical Engineering

Dr.: Jaber Ghaib & M.Sc. Sarah Abbas SarahAbbas@mustaqbal-college.edu.iq

Example 10: calculate the electric energy required to move charge of $(50\mu\text{C})$ between two points the potential between them (6V).

$$V[V] = \frac{W[J]}{q[C]}$$

$$W = V * q = (6)(50 * 10^{-6}) = 300 * 10^{-6}J = 300\mu J$$

Example 11: what quantity of charge must be delivered by a battery with a potential difference of 100V to do 500J work?

Solution: total charge

$$q = \frac{W}{V} = \frac{500}{100} = 5C$$

٤- القدرة الكهربائية (Electric power)

هي الشغل المبذول على وحدة الزمن، ووحدة قياسها [W].

$$P[W] = \frac{W[J]}{t[s]}$$

$$P[W] = \frac{W[J]}{t[s]} = \frac{V.I.t}{t} = V.I$$

$$P[W] = V[V].I[A]$$

Department of Computer Engineering Techniques (Stage: 1) Fundamentals of Electrical Engineering Dr.: Jaber Ghaib & M.Sc. Sarah Abbas

Dr.: Jaber Ghaib & M.Sc. Sarah Abbas SarahAbbas@mustaqbal-college.edu.iq

Q1: how much current is flowing in a circuit where 1.27×10^{15} electrons move past a given point in 100 ms?

Ans.[2.03 mA]

Q2: the current in a certain conductor is 40 mA.

- (i) Find the total charge in coulombs that passes through the conductor in 1.5s.
- (ii) Find the total number of electrons that pass through the conductor in that time.

Ans. [(i) 60 mC, (ii) 3.745×10^{17} electrons]

Q3: how much work will be done by an electric energy source with a potential difference of 3kV that delivers a current of 1 A for 1 minute?

Ans.[180 kJ]

Q4: A 300V energy source delivers 500mA for 1 hour. How much energy does this represent?

Ans.[540 kJ]