BEARING CAPACITY
OF FOUNDATIONS

INTRODUCTION

The soil must be capable of carrying the loads from any engineered structure placed upon it
without a shear failure and with the resulting settlements being acceptable for that structure.

A soil shear failure can result in excessive building distortion and even collapse whereas
excessive settlements can result in structural damage to a building frame.

It is necessary to investigate both base shear resistance and settlements for any structure.

The recommendation for the allowable bearing capacity g, to be used for design is based on the
minimum of either

1. Limiting the settlement to acceptable amount.

2. The ultimate bearing capacity, which considers soil strength, as computed in the following
sections.

The allowable bearing capacity based on shear control g, is obtained by reducing (or dividing)
the ultimate bearing capacity qur (based on soil strength) by a safety factor SF that is deemed
adequate to avoid a base shear failure to obtain

_ Gun
QG SF
BEARING CAPACITY

From Fig. 4-1a and Fig. 4-2 it is evident we have two potential failure modes, where the footing,
when loaded to produce the maximum bearing pressure gy, Will do one or both of the following:
a. Rotate as in Fig. 4-/a about some center of rotation (probably along the vertical line Oa) with
shear resistance developed along the perimeter of the slip zone shown as a circle.

b. Punch into the ground as the wedge agb of Fig. 4-2 or the approximate wedge ObO' of Fig. 4-
la.

It should be apparent that both modes of potential failure develop the limiting soil shear strength
along the slip path according to the shear strength equation given as

s=c+otan ¢
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(@) Footing on ¢ = 0" soil.
Note: §= p’ = y'D, but use § since this is the accepted symbel for bearing capacity computations.
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Area = dA
Friction = o, tan ¢ = ¢ f 93,3 0.2 =0y, %
. cdA
e (¢) Mohr's circle for (a) and for & ¢—c soil.
(b) Physical meaning of
Eq. 2-52) for shear
streagth.

Figure 4-1 Bearing capacity approximation on a ¢ = 0 soil.
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Figure 4-2  Simplified bearing capacity for a ¢—c soil.

BEARING-CAPACITY EQUATIONS

There is currently no method of obtaining the ultimate bearing capacity of a foundation other
than as an estimate.

The Terzaghi Bearing-Capacity Equation

One of the early sets of bearing-capacity equations was proposed by Terzaghi (1943) using the
theory of plasticity to analyze the punching of a rigid base into a softer (soil) material as shown
in Table 4-1.

Terzaghi's bearing-capacity equations were intended for "shallow" foundations where D <B
Note that the original equation for ultimate bearing capacity is derived only for the plane-strain
case (i.e., for continuous foundations).

Since the soil wedge beneath round and square bases is much closer to a triaxial than plane strain
state, the adjustment of @t to Pps is recommended only when L/B > 2

¢ps = 1-50¢tr -17° (¢tr > 340)

bps = Pur (e < 34°)
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TABLE 4-1
Bearing-capacity equations by the several authors indicated

Terzaghi (1943). See Table 4-2 for typical values and for K,, values.

a’
a cos2(45 + ¢/2)
a= e(0.751t— ¢/2)tan¢

N, = (N;— 1)cotd
N, = tan_qb(_Km 1)

que = CN,_-SC + EI-NQ + 0'51’BN‘?S? Nq —

2 \cosl¢p

For: strip round square
se=10 13 1.3
sy =10 06 08

Meyerhof (1963).* See Table 4-3 for shape, depth, and inclination factors.
quit = CNcScdcic + ﬁ Nqudqiq + 0.5YBNySydyiy

N, = €"™* tan’ (45 + %)

N = (N, — 1)coté
N, = (N, - 1)tan (1.4¢)

Hansen (1970).* See Table 4-5 for shape, depth, and other factors.
General: 1 Quc = cNcscdcicgeb, + GNys,dyigg,b, + 0.5yB'N,s,d,i,g,b,
when d=0
use Que = 3.14s.(1 +s, +d. —i.—b. —g)+7
N, = same as Meyerhof above

N, = same as Meyerhof above
N, = L5(N, — Dtan¢

Vesi¢ (1973, 1975).* See Table 4-5 for shape, depth, and other factors.
Use Hansen's equations above.

N, = same as Meyerhof above
N, = same as Meyerhof above
N, = 2(N, + 1)tan¢

*These methods require a trial process to obtain design base dimensions since width B and
length L are needed to compute shape, depth, and influence factors.

tSee Sec. 4-6 when i; < 1.
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Table 4-2 Terzaghi Bearing capacity factors —Eqgs. (4.15), (4.13), and (4.11).®

¢ N, N, N ¢ N, N, N,
0 5.70 1.00 0.00 26 27.09 14.21 9.84
1 6.00 1.10 0.01 27 29.24 15.90 11.60
2 6.30 1.22 0.04 28 31.61 17.81 13.70
3 6.62 1.35 0.06 29 34.24 19.98 16.18
4 6.97 1.49 0.10 30 37.16 22.46 19.13
5 7.34 1.64 0.14 31 4041 25.28 22.65
6 7.73 1.81 0.20 32 44.04 28.52 26.87
7 8.15 2.00 0.27 33 48.09 32.23 31.94
8 8.60 2.21 0.35 34 52.64 36.50 38.4
9 9.09 2.44 0.44 35 57.75 41.44 4541

10 9.61 2.69 0.56 36 63.53 47.16 54.36

11 10.16 2.98 0.69 37 70.01 53.80 65.27

12 10.76 3.29 0.85 38 77.50 61.55 78.61

13 1141 3.63 1.04 39 85.97 70.61 95.03
14 12.11 4.02 1.26 40 95.66 81.27 115.31
15 12.86 4.45 1.52 41 106.81 03.85 140.51
16 13.68 4.92 1.82 42 119.67 108.75 171.99
17 14.60 5.45 2.18 43 134.58 126.50 211.56
18 15.12 6.04 2.59 44 151.95 147.74 261.60
19 16.56 6.70 3.07 45 172.28 173.28 325.34

20 17.69 7.44 3.64 46 196.22 204.19 407.11

21 18.92 8.26 431 47 224.55 241.80 512.84

22 20.27 9.19 5.09 48 258.28 287.85 650.67

23 21.75 10.23 6.00 49 208.71 34463 831.99

24 23.36 11.40 7.08 50 347.50 415.14 1072.80

25 25.13 12.72 8.34

*From Kumbhoikar (1993)

The bearing capacity factors N, Ng, and N, are, respectively, the contributions of cohesion,
surcharge, and unit weight of soil to the ultimate load-bearing capacity.

BEARING-CAPACITY EXAMPLES

Example 4-0. Compute the allowable bearing pressure using the Terzaghi equation for the square
footing and soil parameters shown in Figure below. Use a safety factor of 3 to obtain gu..

P

l

——

TR PISwST
» = 17.30 kN/m?

= ¢ =20°
b=12m ¢ = 20 kPa

L(————B -
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Solution.

Find the bearing capacity. Note that this value is usually what a geotechnical consultant would
have to recommend (B not known but D is).

Since the footing is square (B=L), no adjustment of ¢ value is required.

From Table 4-2 obtain

Ne=17.7 Ny=74 Ny=3.64
se=13 sy =0.8 (from table 4-1, square footing)
quit=CNcsec +q Nyg+ 0.57B N,s,

=20 (17.7) (1.3) + 1.2(17.3)(7.4) + 0.5 (17.3) (B)(3.64)(0.8)
— (613.8 + 25.2 B) kPa

The allowable pressure (a SF = 3 is commonly used when ¢ > 0) is

= ﬂ
9% = S

_ 613.8+25.2B

3 = (205 + 8.4B) kPa

Since B is likely to range from 1.5 to 3 m
at B=1.5m qa= 205 + 8.4(1.5) = 218 kPa (rounding)
at B=3m q.=205+8.4(3) =230kPa
Recommend g, =215~230 kPa

Example 4.1

A square foundationis 2 m x 2 m in plan. The soil supporting the foundation has a friction angle
of ¢ = 25% and ¢ = 20 kN/m?2. The unit weight of soil, y, is 16.5 kN/m3.

Determine the allowable gross load on the foundation using Terzaghi Bearing Capacity
Equations with a factor of safety (FS) of 3.

Assume that the depth of the foundation (Dy) is 1.5 m and that general shear failure occurs in
the soil.

Solution

Since the footing is square (B=L), no adjustment of ¢ value is required.

Quit=CcNc sc +q Ng+ 0.57BNys,

34



se=13 sy =0.8 (from table 4-1, square footing)
At B=2.0m
From Table 4.1, for ¢' = 25°,

N, =125.13
N,=1272
N, =834

Thus,
qui = (20) (25.13) (1.3) + (1.5x16.5)(12.72) + (0.5)(16.5)(2)(8.34)(0.8)

= 653.38 + 314.82 + 110.09 = 1078.29 kN/m?
So, the allowable load per unit area of the foundation is

_ quir 107829

— 2
Ga= e . 359.5 kN/m

Thus, the total allowable gross load is

Q= (359.5)B% = (359.5)(2 x 2) = 1438 kKN

H.W: Resolve the same example assuming the foundation is circular with a diameter of 3m.

Example 4.2

Refer to Example 4.1. Assume that the shear-strength parameters of the soil are the
same. A square foundation measuring B X B will be subjected to an allowable gross
load of 1000 kN with FS = 3 and D; = 1 m. Determine the size B of the foundation.

Solution
Allowable gross load Q =1000 kN with FS =3. Hence, the ultimate load Quir = (Q.)/(FS)
= (1000)(3) = 3000 kN. So,

Q, 3000
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Guit = CN¢se + ﬁ Nq + 0.5])BNySy

For ¢’ = 25°, N, = 25.13, N, = 12.72,and N, = 8.34.

Also,

q=vyD,= (16.5)(1) = 16.5 kKN/m?
Now,
quie = (20) (25.13) (1.3) + (16.5)(12.72) + (0.5)(16.5)(B)(8.34)(0.8)

Combining Eqgs. (a) and (b),
3000

-— = 863.26 + 55.04B (©)
B
B (m) L.H.S R.H.S
1.0 3000 918.3
1.5 1333 945.8
2.0 750 973.3
Try B=1.75m 979.6 959.6
By trial and error, we have
B=17Tm=~18m |

H.W.: Resolve the same example if the allowable gross load is 2500 kN.

Modification of Bearing Capacity Equations for Water Table

Equations in table 4.1 give the ultimate bearing capacity, based on the assumption that the
water table is located well below the foundation. However, if the water table is close to the
foundation, some modifications of the bearing capacity equations will be necessary. (See Figure
below)
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D

AP Yoy, Groundwater D.

JF Iy table ¥
e - [ U B I

D,

< B o o

l Groundwater table

-y Case 11

Yo = saturated

unit weight

Case I. If the water table is located so that 0 < D1 < Dy, the factor g in the bearing capacity
equations takes the form

q = effective surcharge=D;y + D2 y
where ¥ = ¥Ysat— Yw
Ysat = Ssaturated unit weight of soil
Yw= unit weight of water = 10 kN/m?3

Also, the value of y in the last term of the equations has to be replaced by ¥ = Ysat — Yw

Case ll. For a water table located sothat 0 < d < B,

q =Yy Dy
In this case, the factor ¥ in the last term of the bearing capacity equations must be replaced
by the factor

== r+£(_r)
Y=Y B'Y'Y

Case lll. When the water table is located so that d = B, the water will have no effect on the
ultimate bearing capacity.

Example 4-8. A square footing that is vertically and concentrically loaded is to be placed on a
cohesionless soil as shown in Figure below. The soil and other data are as shown.
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7y = 18.10kN/m?
0.y = 35°

d 'r" g- 0

_L____,Lx;;—»_'___ GWT_ _

i a-#;
. " = ySat —20 12 kN1m3

.".';'.

1.95 m—
P‘Ll m -~

Required. What is the allowable bearing capacity using the Terzaghi equation and a SF = 2.5?

Solution:
Since the footing is square (B=L), no adjustment of ¢ value is required.

d=195-1.1=0.85m
B=25m and d<B

d
v ’ + —_ — ’
T=7+5 (y=7v)

),/ =Vsat—VYw
Y =20.12-10=10.12 kN /nr’

0.85
Y =10.12 +—2(18.1-10.12) = 12.83 kN/nr’

quit=CcNcSc +q Ng+ 0.57B Nysy
From table 4.2 N.=57.75 Ny =41.44 N, =45.41
=13 sy =0.8 (from table 4-1, square footing)
for B=2.5m

qult 0+1.1x181x41.44+0.5x12.83x2.5x45.41x 0.8
= 825.1 +582.6 = 1407.7 kN/m?
qa = 1407.7 / 2.5 = 563 KN/m* =563 kPa

H.W: Resolve the same example assuming the water table is A: 0.5 m below ground level
B: 4.0 m below ground level
Meyerhof 's Bearing-Capacity Equation

Meyerhof (1951, 1963) proposed a bearing-capacity equation similar to that of Terzaghi but
included a shape factor s, with the depth term V,. He also included depth factors d; and inclination
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factors i; for cases where the footing load is inclined from the vertical. These additions produce
equations of the general form shown in Table 4-1, with select N factors computed in Table 4-4.

TABLE 4-3
Shape, depth, and inclination factors for
the Meyerhof bearing-capacity equations

of Table 4-1
Factors Value For
Shape: sc =1+ 0.2Kp§ Any ¢
Sg =8y =1 +0.1Kp% ¢ > 10°
S =8y =1 $=0
D
Depth: d.=1+0.2 K”E Any ¢
dq=d.,=l+0.1,/[«f,,,—l'rB2 é>10
dq = dly = l ¢ = O
6° Y
Inclination: I =g = (1 = 900) Any ¢
R v ,
° . 0°
iy =[1 = — >0
E; * ( ¢°) ¢
H iy =0for6>0 ¢=0

Where K, = tan?(45 + ¢/2) as in Fig. 4-2

6 = angle of resultant R measured from vertical without
asign;if @ = Qalli; = 1.0.

B, L, D = previously defined
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TABLE 4-4

Bearing-capacity factors for the Meyerhof, Hansen, and Vesi¢ bearing-
capacity equations

Note that N, and N, are the same for all three methods; subscripts identify author for N,

¢ Nc ' Nq Ny(ﬂ) NV(M) Ny(v) N,/Nc 2tan ¢(1 - sin ¢)2
0 5.14* 1.0 0.0 0.0 0.0 0.195 0.000
5 6.49 1.6 0.1 0.1 04 0.242 0.146
10 8.34 25 0.4 04 1.2 0.296 0.241
15 10.97 39 1.2 1.1 2.6 0.359 0.294
20 14.83 6.4 29 29 54 0.431 0.315
Z25 20.71 10.7 6.8 6.8 109 0.514 0.311
26 22.25 11.8 7.9 8.0 12.5 0.533 0.308
28 25.79 14.7 10.9 11.2 16.7 0.570 0.299
30 30.13 18.4 15.1 15.7 224 0.610 0.289
32 35.47 23.2 20.8 22.0 30.2 0.653 0.276
34 42.14 294 28.7 31.1 41.0 0.698 0.262
36 50.55 37.7 - 400 44 .4 56.2 0.746 0.247
38 61.31 48.9 56.1 64.0 779 0.797 0.231
40 75.25 64.1 794 93.6 109.3 0.852 0.214
45 133.73 134.7 200.5 262.3 271.3 1.007 0.172
50 266.50 318.5 567.4 871.7 761.3 1.195 0.131

* = gr + 2 as limit when ¢ — 0°.
Slight differences in above table can be obtained using program BEARING.EXE on diskette depending on com-
puter used and whether or not it has floating point.

Hansen's Bearing-Capacity Method

Hansen (1970) proposed the general bearing-capacity case and N factor equations shown in Table
4-1. Hansen's shape, depth, and other factors making up the general bearing capacity equation are
given in Table 4-5. The extensions include base factors for situations in which the footing is tilted
from the horizontal b; and for the possibility of a slope f of the ground supporting the footing to
give ground factors gi.

Note that when the base is tilted, ¥ and H are perpendicular and parallel, respectively, to the base,
compared with when it is horizontal as shown in the sketch with Table 4-5c. The bearing capacity
using N factors as given in Table 4-4.

The Hansen equation can be used for both shallow (footings) and deep (piles, drilled caissons)
bases.
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TABLE 4-5a

Shape and depth factors for use in either the Hansen
(1970) or Vesi¢ (1973, 1975b) bearing-capacity equations
of Table 4-1. Use s., d. when ¢» = 0 only for Hansen
equations. Subscripts H, V for Hansen, Vesic, respectively.

Shape factors Depth factors
Sty = 0.22, (¢ = 0% d. =04k (¢ =0°)
- , d. = 1.0+ 04k
Sey = 1-0"'%9“% k = D/B for D/B < 1
k = tan"'(D/B) for D/B > 1
Sy = 104+ 224 5
" - N L k in radians
s = 1.0 for strip
Sqy = 1.0+ %sinqb d, = 1+ 2tan¢(1 — sinp)*k
Sqvy = 1.0+ % tan ¢ k defined above
for all ¢
syany = 1.0 -0.4% = 0.6 d, = 1.00 for all ¢

Sy(v) = 1.0 - 0.4% = 0.6

Notes:
1. Note use of “effective” base dimensions B’, L' by Hansen but not by Vesi¢.

2. The values above are consistent with either a vertical load or a vertical load accompa-
nied by a horizontal load Hp.

3. With a vertical load and a load H; (and either Hg = 0 or Hg > 0) you may have to
compute two sets of shape s; and d; as s; g, s;; and d; g, d; | . For i, L subscripts of Eq.
(4-2), presented in Sec. 4-6, use ratio L'/B' or D/L’.
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TABLE 4-5b

Table of inclination, ground, and base factors for the
Hansen (1970) equations. See Table 4-5¢ for equivalent
Vesi¢ equations.

Inclination factors Ground factors (base on slope)
. - Hf P e Bo
i 0505 4f! A,C, 8 = 147
- — 1-4, _ _ B°
I iy Nq 1 8 = 1.0 l—ﬁ;
. [, 05H ' o "
fa = [1 V+ Ascicotd 8 = & = (1~ 05wnp)
2<a; =5
Base factors (tilted base)
. i 0.7H; 2 ' 77° _
b= hl V+ Afc,,cotqbr be=tam ©@=0
. _ [ _ 0.7 = n°/450°)H; | b, =1- o (¢ >0)
v= 1T Agcacotd 147°
b, = exp(—2ntan¢)
2=a, <5
b, = exp(—2.7ntan ¢)
7 in radians
Notes:

1. Use H; as either Hg or H, or both if H; > 0.

2. Hansen (1970) did not give an i, for ¢ > 0. The value above is from Hansen (1961)
and also used by Vesic¢.

3. Variable ¢, = base adhesion, on the order of 0.6 to 1.0 X base cohesion.

4. Refer to sketch for identification of angles n and B, footing depth D, location of H;
(parallel and at top of base slab; usually also produces eccentricity). Especially note
V = force normal to base and is not the resultant R from combining V and H;.
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TABLE 4-5¢
Table of inclination, ground, and base factors for the Vesic (1973, 1975) bearing-capacity equations.
See notes below and refer to sketch for identification of terms.

Inclination factors Ground factors (base on slope)
i MHi ’ . .
i,=1- AN, (¢ =0) 8. = S_Blz B in radians
. 1—-1i _ . 1=
k=~ y—1 >0 & =4~ Sidme ?7°
ig, and m defined below i, defined with i,
. _ H;. L ~ )
iq = [1.0 V+Afc,,cot¢r 8 = 8y = (1.0 —tanB)
Base factors (tilted base)
m+1
iy = [1.0— H, ] b,=g (=0
V+ AfCa cot ¢ 28
oy o 2HBL b= 1" STaane
P+ BL b, = b, = (1.0 — ntan¢)?
m=m = 2+ L/B
L= 1+1/B
Notes:

1. When ¢ = O(and 8 # 0) use Ny = —2sin(+f) in Ny term.

2. Compute m = mg when H; = Hpg (H parallel to B) and m = m; when H; =
Hy (H parallel to L). If you have both Hp and Hy use m = _/m?% + m}. Note
useof Band L, not B', L'.

3. Refer to Table sketch and Tables 4-5a,5 for term identification.

4. Terms N, Ng, and N, are identified in Table 4-1.

5. Vesié€ always uses the bearing-capacity equation given in Table 4-1 (uses B’
in the N, term even when H; = H}).

6. H; term = 1.0 for computing iy, iy (always).
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Notes: B+ n 90° (Both 8 and 7) have signs (+) shown.)
B ¢

~
~
¢ Hpx = Vian 8+ c,A;
¢
o = friction angle between
For: L/B<?2 use ¢, base and soil (5¢ <5< ¢)
L/IB>2use pp=1.5¢,~ 17" Ag = B'L’ (effective area)
Gu S 34" use @y = ¢y, ¢, = base adhesion (0.6 to 1.0c)
B
!
' AF= B'L
] "".'—Zﬂ
I
L l H
: B
v | 1
| Hy
H I
B fe——B—— =
—A—->~\.T L
col
- M
S
Vv
\-’W IATAIAIRS l‘
Hy A\ N P
B \-See
= H.. Chap 11

Hppax + P, 2 SF X (Hp)
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Example 4-2: A footing load test made produced the following data:

D=05m B=0.5m L=20m
v'=9.31 kN/m? Drriaxial = 42.5° Cohesion ¢ =0
B _ Py _ 1863 _
Py = 1863 kN (measured) g 5L — 05x2 1863 kPa (computed)

Required: Compute the ultimate bearing capacity by both Hansen and Meyerhof equations and
compare these values with the measured value.

Solution:

a. Since ¢ = 0, any factors with subscript ¢ do not need computing. All g; and b; factors are 1.00;
with these factors identified, the Hansen equation simplifies to

qui = Y'DN,s.d, + 0.5y' BN,S, d,
L/B = % =4 ¢p = 1.5(42.5) — 17 = 46.75°
Use ¢ = 47°
From a table of ¢ in 1° increments (table not shown) obtain
N, =187 N, =299

Using linear interpolation of Table 4-4 gives 208.2 and 347.2. Using Table 4-5a one obtains [get
the 2 tan ¢(1 — sin ¢)? part of d, term from Table 4-4] the following:
B’ B’

SqHy = 1+ E Sin¢ = ].18 SyH) = 1 _0.4E = 0.9

dy = 1+ 2and(l —sintb)zg-; = 1+O.155§

0.5
1+0.155(ﬁ) = 1155 d,=10

With these values we obtain
quir = 9.31(0.5)(187)(1.18)(1.155) + 0.5(9.31)(0.5)(299)(0.9)(1)
= 1812 kPa vs. 1863 kPa measured

b. By the Meyerhof equations of Table 4-1 and 4-3, and ¢,s = 47°, we can proceed as follows:

45



Step 1. Obtain N, = 187

Ny = (N, — )tan (1.4¢) = 413.6 — 414

K, = m2(45+ §)= 6.44 > K, = 2.54

5y = 1+o.1x,,% - l+0.l(6.44)g:—(5) = 1.16

o
]

dy = dy = 1+o.1,/Kp§ = 1+o.1(2.54)g:—g = 1.25

Step 2. Substitute into the Meyerhof equation (ignoring any ¢ subscripts):

qu = Y'DNys,d, + 0.5yBN,s,d,
= 9.31(0.5)(187)(1.16)(1.25) + 0.5(9.31)(0.5)(414)(1.16)(1.25)
= 1262 + 1397 = 2659 kPa

Example 4-3:

A series of large-scale footing bearing-capacity tests were performed on soft saturated clay (¢
=0). One of the tests consisted of a 1.05-m-square footing at a depth D = 1.5 m. At a 25 mm.
settlement the load was approximately 16.1 tons from interpretation of the given load-settlement
curve. Unconfined compression and shear tests gave values as follows:

¢« = 3.0 ton/m? ¢ =1.92 ton/m?, the unit weight of soil is 17.5 kKN/m?

Required: Compute the ultimate bearing capacity by the Hansen equations and compare with
the load-test value of 16.1 tons.
Solution: Obtain N, s';, and d’; factors. Since ¢= 0°, we have N. = 5.14 and N,= 1.0

e e
i s ﬂ.EL - {‘_I‘.EI = 0.2
g =1 E = 2 ij_ o
d, = 0.4tan == 0.4 tan T 038 (D>B)
qu~=S514sy (1 +s'-+d') +q Table 4-1 for ¢= 0 case
c=1.92x10=19.2 kN/m> (10 converts ton to kN)

quir=5.14(19.2)(1 + 0.2 + 0.38) + 17.5 x1.5 = 182.2 KN/m?

From load test, quemar= 16.1/1.05% =14.6 ton/m*> = 146 kN/m?
If we use the unconfined compression tests and take ¢ = ¢, /2, we obtain
quie = (1.5/ 1.92) x182.2 = 142.4 kN/m?
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Example 4.5

A square column foundation (see figure below) is to be constructed on a fine sand
deposit. The allowable load Q will be inclined at an angle 8 = 20° with the vertical. The
standard penetration numbers N7o obtained from the field are as follows.

Depth (m) N7o

1.5
3.0
4.5
6.0
7.5
9

© 00 N WA [,

c=0

= 18 kN/m’
|<—B=|.25m—>|7 "

Determine Q using Meyerhof bearing capacity equations, use F.S =3

Solution:

The average SPT numberis (5+4+9+7+8+8)/6=6.83
From table 3-4, the soil can be classified as medium density fine sand and the angle of internal

friction (¢ ) is estimated to be = 30°

Since the footing is square (B=L), no adjustment of ¢ value is required

The general form of Meyerhof B.C equation is:
quic = CNcScdcic + q Nqudqiq + O.SYBNySydyiy

From table 4-4 and for ¢ = 30°, we have N. = 30.13, Nq=18.4 and Ny =15.7

Since ¢ = 0, any factors with subscript ¢ do not
need computing.

B

where K, = tan’ (45 +¢ /2) = tan® (45 + 30/2) = 3.0

1.25
s sg=s=1+01x3x>2=13

D
for ¢ > 10° dq=d,=l+{).l,/K_pE

0.7
- dq—dy—1+0.lx/§rzs—1.097~ 1.1

6\
for any ¢ ip =iy = (] - 900)

47

Factors Value For
Shape: S = 1+0.2K,,€ Any ¢
Sg =8 = l+0.1K,,% ¢ >10°
5=585,=1 ¢=0
Depth: d.=1+02 fl{_pg Any ¢
dy=d, =1+0.1 K,,—g é>10
d,=d, =1 éd=0
oY
Inclination: i =i, = (I - W) Any ¢
R v
o °\
i, =[1—-— >0
1/ w=(1-5) ®
H iy =0for6 >0 ¢=0

Where K, = tan®(45 + ¢/2) as in Fig. 4-2
6 = angle of resultant R measured from vertical without
asign; if@ = Oalli; = 1.0.
B, L, D = previously defined




iy = (1- =2)? = 0.605

o k2
i,=(l—~g;) for $>0
2

- 20v2 _
iy=(1-3)°=0111

G=Dxy=0.7x18=12.6 kN/m?
Que=12.6x18.4x1.3x 1.1 x 0.605 + 0.5 x 18 x 1.25x 15.7x 1.3 x 1.1x 0.111 = 200.5 + 28.03
=228.3 kKN/n??

q.=228.3/3 =76.2 KN/m?
Q=¢.,xBxL=762x125=119kN

Example 4-4:
Given: A series of unconfined compression tests in the zone of interest (from SPT samples)
from a boring-log give an average ¢, = 200 kPa. The soil is fully saturated (¢ = 0)

Required: Estimate the allowable bearing capacity for square footings located at somewhat
uncertain depths ( let D =0 m) and B dimensions unknown using both the Meyerhof and
Terzaghi bearing-capacity equations. Use safety factor SF = 3.0.

Solution: (The reader should note this is the most common procedure for obtaining the
allowable bearing capacity for cohesive soils with limited data.)

a:. By Meyerhof equations,
from table 4.1

qut = cNcs.d. + gN,s,d, + 0.5yB'N,s,d,

¢ = q.,/2 (for both equations)

fromtable 4.3 s.=1+0.2K, %
K, =tan’> (45 + @ /2) = tan® (45) = 1.0

Se=1.2
dc=1+0.2J1?p§
d.=1+0=10
S =5y =1 d=0
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dy=dy =1 ¢ =0
Qun = 1.2¢N. + aNq

— Gue _ s 1,39 _ _
Ga = 3 1.2 2 (5.14)3 + 3 1.03q, + 0.3g

b. By Terzaghi equations, we can take s. = 1.3 for ¢= 0.

9a = 3 2 (5.7)(1.3)3 - 3 1.24¢, + 0.3g

FOOTINGS WITH ECCENTRIC
OR INCLINED LOADINGS

A footing may be eccentrically loaded from a concentric column with an axial load and moments
about one or both axes as in Fig. 4-4. The eccentricity may result also from a column that is
initially not centrally located.

Footings with Eccentricity

Research and observation [Meyerhof and Hansen] indicate that effective footing dimensions
obtained (refer to Fig. 4-4) as

L':L_Zex B,:B_ 2ey

should be used in bearing-capacity analyses to obtain an effective footing area defined as

Ar=B'L'

and the center of pressure when using a rectangular pressure distribution of ¢’ is the center of area
B'L" at point A'; i.e., from Fig 4-4a:

2ex+L'=1L
extc=1L1L/2

Substitute for L and obtain ¢ = L'/2. If there is no eccentricity about either axis, use the actual
footing dimension for that B’ or L'.

For design the minimum dimensions (to satisfy ACI 318 code) of a rectangular footing with a
central column of dimensions wx X wy are required to be

Bmin=4ey+Wy B'=2ey+Wy
Luyin =4ex + wy L'=2ex +wy
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Final dimensions may be larger than Bmin or Lmin based on obtaining the required allowable
bearing capacity.

The ultimate bearing capacity for footings with eccentricity, using Hansen/Vesic equations, is

found by either the Hansen or Vesic bearing-capacity equation given in Table 4-1 with the
following adjustments:

L Tt

B!

V = qu(B’L)/SF

M,
g’ using L’

Qmas

— s S— ——

e
R=V
(a) Rectangular base

Figure 4-4. Method of computing effective footing dimensions when footing is eccentrically
loaded for rectangular bases.

a. Use B' in the yBN, term.

b. Use B'and L' in computing the shape factors.

c. Use actual B and L for all depth factors.

The computed ultimate bearing capacity qur is then reduced to an allowable value ¢, with an
appropriate safety factor SF as

ga = qu/SF (and P, = q.B'L’)
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Example 4-5. A square footing is 1.8 X 1.8 m with a 0.4 X 0.4 m square column. It is loaded
with an axial load of 1800 kN and M, = 450 kN * m; M, = 360 kN * m. Undrained triaxial tests
(soil not saturated) give ¢ = 36° and ¢ =20 kPa. The footing depth D = 1.8 m; the soil unit weight
y = 18.00 kN/m?; the water table is at a depth of 6.1 m from the ground surface.

Required: What is the allowable soil pressure, if SF = 3.0, using the Hansen bearing-capacity
equation with B’, L'?

Solution. See Fig. E4-5.
ey =450/1800 =0.25 m ex=360/1800 = 0.20 m

Both values of e are < B/6 = 1.8/6 = 0.30 m. Also
Buin =4(0.25)+0.4=1.4<1.8 m given
Luin=4(0.20) +0.4=1.2<1.8 mgiven

Now find

B'=B-2e,=1.8-2(0.25)=13m
L'=L-2e.=18-2(0.20)=1.4m(L> B

By Hansen's equation.

From Table 4-4 at ¢ = 36° and rounding to integers, we obtain
N.=51 N;=38 N,=40
Ny/N.=0.746 2tan¢ (1-sing)? = 0.247

Compute D/B=1.8/1.8=1.0
Now compute

sc=1+ (Ny/Ng)(B7/L') =1+0.746(1.3/1.4) = 1.69
d.=1+0.4D/B=1+0.4(1.8/1.8) =1.40

sq=1+ (BYL")sin$p =1+ (1.3/1.4) sin 36° = 1.55
d,=1+2tan ¢ (1-sing)’ D/B =1+ 0.247(1.0) = 1.25
s9=1-04B7L"'=1-04x1.3/14=0.62>0.60 (0O.K))
dy=1.0

All ii =g = bl‘ =1.0 (l’lOt OO)

The Hansen equation is given in Table 4-1 as

Guit = ¢ NeSede +q@ Nysqdy + 0.5y B' N, s, d,
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T
I
I
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I
| | =02
! g
|
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| M, =360 kN-m
~ '!:' le,=0.25
I I ;/(M
-] - X
; | E (=450kN-m| 2
- | S K
(- -]
3 I
I 04m M, 3
I e,= 2=—""=02
I V1800
2e,=04 | _ M, 450
—"'L __________ B &=V ~1800 0.25
B'=18-2%x02=14
26,=0.50 L'=18-2x025=13

Usually backﬁlled;

¢, =36° c¢=20kPa
¥’ = ¥ = 18.00 kN/m?

Figure E4-5

Inserting values computed above with terms of value 1.0 not shown (except d,) and using
B'=1.3, we obtain

Qute = 20(51)(1.69)(1.4) + 1.8(18.0)(38)(1.55)(1.25)
+0.5(18.0)(1.3)(40)(0.62)(1.0)

= 2413 + 2385 + 290 = 5088 kPa
For SF = 3.0 the allowable soil pressure g, is

qann = 5088/3 = 1696 kPa — 1700 kPa
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The actual soil pressure is

_1800_ 1800 _
Qact =57 = 13514 @

Note that the allowable pressure g, is very large, and the actual soil pressure gac 1s also large.
With this large actual soil pressure, settlement may be the limiting factor. Some geotechnical
consultants routinely limit the maximum allowable soil pressure to around 500 kPa in
recommendations to clients for design whether settlement is a factor or not. Small footings with
large column loads are visually not very confidence-inspiring during construction.

BEARING CAPACITY FROM SPT

The SPT is widely used to obtain the bearing capacity of soils directly. One of the earliest
published relationships was that of Terzaghi and Peck. This has been widely used, but these
curves were overly conservative. Meyerhof published equations for computing the allowable
bearing capacity for a 25-mm settlement. These were also very conservative.

Joseph E. Bowels adjusted the equations to obtain the following:

- Ng (S,
Gl KN/) = —=- F{ T (for B < 1.22m)

0.05
and
Ne (B+03 S,
2 L
qnel(kN/m) 008( B ) Fd(ZS) (fO['B l22m)
where

¢net = allowable bearing pressure for AHy = 25-mm, kPa

D
Fa=1+0.33 ?f < 1.33 [as suggested by Meyerhof]

B = foundation width, in meters
Se = settlement, in mm.

In these equations the allowable soil pressure is proportional to settlement. In general the
allowable pressure for any settlement AH; is

G = —qu
“ AH,™ where AH) = 25 mm.
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Example 4-12

Given. The average Ng) blow count = 6 in the effective zone for a footing located at D = 1.6 m
(blow count average in range from 1- to 4-m depth).

Required. What is the allowable bearing capacity for a 40-mm settlement? Present data as a
table of g, versus B.

Solution. From Figure 3.17 we can see D, is small, soil is "loose," and settlement may be a
problem.

Should one put a footing on loose sand or should it be densified first?

(including Fy) on a programmable calculator or personal computer and obtain the table, which
can be plotted as required.

forB=1m Fy=1+033 % ~1.528>1.33 take Fq=133 OK
+“B<1.2mm
Ng (S,
kN/m?) = F
Q== x 133 x (52 ) = 255.36 kN/m?
For example for B =2 m Fy=1+0233 % ~1264<1330K
Ny (B+03\* (S,
(o KN/M?) = o8 (—B ) F,,(z 5) (for B> 122 m)
2+0.3 4
et = E x(2)%x 1.264x (—5) — 200.6 kKN/m?

forB=3m Fy=1+033 ?=1.176 <1330K

6 3+0.3

5 40 _ 2
Grei-—= X(F2)2x 1.176x (25) = 170.72 kKN/m

forB=4m Fq=132 and quet= 157 kKN/m?

B (m) 1 2 3 4
Qnet (kPa) 2554 |200.6 170.7 157
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