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BEARING CAPACITY 
OF FOUNDATIONS 

INTRODUCTION 
 
The soil must be capable of carrying the loads from any engineered structure placed upon it 
without a shear failure and with the resulting settlements being acceptable for that structure. 
A soil shear failure can result in excessive building distortion and even collapse whereas 
excessive settlements can result in structural damage to a building frame. 
It is necessary to investigate both base shear resistance and settlements for any structure. 
 
The recommendation for the allowable bearing capacity qa to be used for design is based on the 
minimum of either 
1.  Limiting the settlement to acceptable amount. 
2. The ultimate bearing capacity, which considers soil strength, as computed in the following 
sections. 
The allowable bearing capacity based on shear control qa is obtained by reducing (or dividing) 
the ultimate bearing capacity qult (based on soil strength) by a safety factor SF that is deemed 
adequate to avoid a base shear failure to obtain 

                     
 

BEARING CAPACITY 
 

From Fig. 4-1a and Fig. 4-2 it is evident we have two potential failure modes, where the footing, 
when loaded to produce the maximum bearing pressure qult, will do one or both of the following: 
a. Rotate as in Fig. 4-1a about some center of rotation (probably along the vertical line Oa) with 
shear resistance developed along the perimeter of the slip zone shown as a circle. 
 b. Punch into the ground as the wedge agb of Fig. 4-2 or the approximate wedge ObO' of Fig. 4-
1a. 
 
It should be apparent that both modes of potential failure develop the limiting soil shear strength 
along the slip path according to the shear strength equation given as 
 
s = c + tan  
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BEARING-CAPACITY EQUATIONS  
 
There is currently no method of obtaining the ultimate bearing capacity of a foundation other 
than as an estimate. 
 
The Terzaghi Bearing-Capacity Equation 
One of the early sets of bearing-capacity equations was proposed by Terzaghi (1943) using the 
theory of plasticity to analyze the punching of a rigid base into a softer (soil) material as shown 
in Table 4-1.  
Terzaghi's bearing-capacity equations were inte  
Note that the original equation for ultimate bearing capacity is derived only for the plane-strain 
case (i.e., for continuous foundations).
Since the soil wedge beneath round and square bases is much closer to a triaxial than plane strain 
state, the adjustment of tr to ps is recommended only when L/B > 2 

ps = 1.50 tr - 17°            ( tr > 34°)  

ps = tr                             ( tr  34°)  
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qult = cNcscdcic + Nqsqdqiq  s d i
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The bearing capacity factors Nc, Nq, and N  are, respectively, the contributions of cohesion, 
surcharge, and unit weight of soil to the ultimate load-bearing capacity. 
 
BEARING-CAPACITY EXAMPLES 
Example 4-0. Compute the allowable bearing pressure using the Terzaghi equation for the square 
footing and soil parameters shown in Figure below. Use a safety factor of 3 to obtain qa..  

 

Table 4-2 Terzaghi Bearing capacity factors  
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Solution. 
Find the bearing capacity. Note that this value is usually what a geotechnical consultant would 
have to recommend (B not known but D is).  
Since the footing is square (B=L), no adjustment of  value is required. 
From Table 4-2 obtain  
 

Nc = 17.7           Nq = 7.4      N  = 3.64    

sc = 1.3            s  = 0.8     (from table 4-1, square footing) 

qult = cNc sc   +  Nq + 0.5 B N s  

      = 20 (17.7) (1.3) + 1.2(17.3)(7.4) + 0.5 (17.3) (B)(3.64)(0.8) 
      = (613.8 + 25.2 B) kPa 

The allowable pressure (a SF = 3 is commonly used when c > 0) is 

 
         

         =   = (205 + 8.4B) kPa 

Since B is likely to range from 1.5 to 3 m  

       at   B= 1.5 m                                qa = 205 + 8.4(1.5) = 218 kPa (rounding) 

      at   B = 3m                                    qa = 205 + 8.4(3)     = 230 kPa 

Recommend qa = 215 230 kPa 

 

Example 4.1 
A square foundation is 2 m x 2 m in plan. The soil supporting the foundation has a friction angle 
of  = 250 and c = 20 kN/m2. The unit weight of soil, , is 16.5 kN/m3. 
Determine the allowable gross load on the foundation using Terzaghi Bearing Capacity 
Equations with a factor of safety (FS) of 3. 
Assume that the depth of the foundation (Df) is 1.5 m and that general shear failure occurs in 
the soil.  
 
Solution 
 
Since the footing is square (B=L), no adjustment of  value is required. 
 

qult = cNc sc   +  Nq + 0. BN s  
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sc = 1.3            s  = 0.8     (from table 4-1, square footing) 

       At  B=2.0m            

 
qult = (20) (25.13) (1.3) + (1.5x16.5)(12.72) + (0.5)(16.5)(2)(8.34)(0.8) 
 
            = 653.38 + 314.82 + 110.09 = 1078.29 kN/m2 

So, the allowable load per unit area of the foundation is 
 

                           qa =   =  = 359.5 kN/m2 

Thus, the total allowable gross load is 

 
                               Q= (359.5)B2 = (359.5)(2 x 2) = 1438 kN 
 
 
H.W: Resolve the same example assuming the foundation is circular with a diameter of 3m. 
 
 
 
 

 
  Solution 

Allowable gross load Q =1000 kN with FS =3. Hence, the ultimate load Qult = (Qu)/(FS)   

                  = (1000)(3) = 3000 kN. So, 
              

                  qult  =  =  
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qult = cNc sc   +  Nq s  

 

 
qult = (20) (25.13) (1.3) + (16.5)(12.72) + (0.5)(16.5)(B)(8.34)(0.8) 
     = 863.26 + 55.04 B                                         (b) 
 

 
     B (m)  L.H.S    R.H.S 
  1.0  3000 918.3 
  1.5  1333 945.8 
  2.0  750 973.3 
Try B=1.75m 979.6 959.6 

 

 
 
H.W.:  Resolve the same example if the allowable gross load is 2500 kN. 
 
Modification of Bearing Capacity Equations for Water Table 

Equations in table 4.1 give the ultimate bearing capacity, based on the assumption that the 
water table is located well below the foundation. However, if the water table is close to the 
foundation, some modifications of the bearing capacity equations will be necessary. (See Figure 
below)  
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Case I. If the water table is located so that 0 D1   Df ,  the factor q in the bearing capacity 
equations takes the form 
 
              = effective surcharge = D1   +  D2    
   where   = sat  w 
    sat  = saturated unit weight of soil 
    w = unit weight of water = 10 kN/m3 

 
Also, the value of   in the last term of the equations has to be replaced by   = sat  w 
    
Case II. For a water table located so that 0  d  B, 
             =  Df  
  In this case, the factor    in the last term of the bearing capacity equations must be replaced 
by the factor   

Case III. When the water table is located so that d  B, the water will have no effect on the 
ultimate bearing capacity. 
 
 
Example 4-8. A square footing that is vertically and concentrically loaded is to be placed on a 
cohesionless soil as shown in Figure below. The soil and other data are as shown. 
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Required. What is the allowable bearing capacity using the Terzaghi equation and a SF = 2.5? 

Solution: 
             Since the footing is square (B=L), no adjustment of  value is required. 
 
             d = 1.95  1.1 = 0.85 m 

             B= 2.5m      and    d < B 

 

    qult = cNc sc   +  Nq + 0.5 B N s  

sc = 1.3            s  = 0.8     (from table 4-1, square footing) 

            for    B = 2.5m           

qult = 0 + 1.1 x 18.1x 41.44 + 0.5 x 12.83 x 2.5 x 45.41 x 0.8 
                =  825.1 + 582.6 =  1407.7 kN/m2 
           qa = 1407.7 / 2.5 =  563 kN/m2  = 563 kPa 
 
H.W: Resolve the same example assuming the water table is A: 0.5 m below ground level 
           B: 4.0 m below ground level 
Meyerhof 's Bearing-Capacity Equation 
 
Meyerhof (1951, 1963) proposed a bearing-capacity equation similar to that of Terzaghi but 
included a shape factor sq with the depth term Nq. He also included depth factors di and inclination 
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factors ii for cases where the footing load is inclined from the vertical. These additions produce 
equations of the general form shown in Table 4-1, with select N factors computed in Table 4-4.
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Hansen's Bearing-Capacity Method
Hansen (1970) proposed the general bearing-capacity case and N factor equations shown in Table 
4-1. Hansen's shape, depth, and other factors making up the general bearing capacity equation are 
given in Table 4-5. The extensions include base factors for situations in which the footing is tilted 
from the horizontal bi and for the possibility of a slope of the ground supporting the footing to 
give ground factors gi. 
Note that when the base is tilted, V and H are perpendicular and parallel, respectively, to the base, 
compared with when it is horizontal as shown in the sketch with Table 4-5c. The bearing capacity 
using N factors as given in Table 4-4.
The Hansen equation can be used for both shallow (footings) and deep (piles, drilled caissons) 
bases. 
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= 0.5-0.5
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TABLE 4-5c
Table of inclination, ground, and base factors for the Vesic (1973, 1975) bearing-capacity equations.
See notes below and refer to sketch for identification of terms.
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Example 4-2:  A footing load test made produced the following data:  
 
D = 0.5 m    B = 0.5 m                       L = 2.0 m 

3                   triaxial  = 42.5°             Cohesion c = 0 

Pult = 1863 kN (measured)   qult = = 1863 kPa (computed) 

 
Required: Compute the ultimate bearing capacity by both Hansen and Meyerhof equations and 
compare these values with the measured value. 
Solution: 
a. Since c = 0, any factors with subscript c do not need computing. All gi and bi factors are 1.00; 
with these factors identified, the Hansen equation simplifies to 
 
 
                                 qult = qsqdq +  BN S  d  
 

 
 

   With these values we obtain 

    qult = 9.31(0.5)(187)(1.18)(1.155) + 0.5(9.31)(0.5)(299)(0.9)(l) 

          = 1812 kPa vs. 1863 kPa  measured 

 

b. By the Meyerhof equations of Table 4-1 and 4-3, and ps = 47°, we can proceed as follows: 
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Example 4-3: 
     A series of large-scale footing bearing-capacity tests were performed on soft saturated clay (  
=0). One of the tests consisted of a 1.05-m-square footing at a depth D = 1.5 m. At a 25 mm. 
settlement the load was approximately 16.1 tons from interpretation of the given load-settlement 
curve. Unconfined compression and shear tests gave values as follows: 

qu = 3.0 ton/m2          c = 1.92 ton/m2 ,  the unit weight of soil is 17.5 kN/m3                   

Required: Compute the ultimate bearing capacity by the Hansen equations and compare with 
the load-test value of 16.1 tons. 
Solution: Obtain N, s'i, and d i factors. Since = 0°, we have Nc = 5.14 and Nq= 1.0  
 

 
qult= 5.14su (1 + s'c + d'c) +              Table 4-1 for = 0 case 

c = 1.92 x 10 = 19.2 kN/m2              (10 converts   ton to kN) 

qult = 5.14(19.2)(1 + 0.2 + 0.38)  +  17.5 x1.5 = 182.2 kN/m2 
 
From load test,  qactual = 16.1/1.05 2  = 14.6 ton/m2  = 146 kN/m2 

If we use the unconfined compression tests and take c = qu /2, we obtain 

qult = (1.5/ 1.92) x182.2  = 142.4 kN/m2 
 



47

Example 4.5
A square column foundation (see figure below) is to be constructed on a fine sand 
deposit. The allowable load Q will be inclined at an angle = 20° with the vertical. The 
standard penetration numbers N70 obtained from the field are as follows.

         Depth (m)        N70

______________________
              1.5                 5
              3.0                4
              4.5                9
              6.0             7
              7.5                8
                9                 8

Determine Q using Meyerhof bearing capacity equations, use F.S =3
Solution:
The average SPT number is (5 + 4 + 9 + 7 + 8 + 8) / 6 = 6.83
From table 3-4, the soil can be classified as medium density fine sand and the angle of internal 
friction ( ) is estimated to be = 300

Since the footing is square (B=L), no adjustment of value is required
The general form of Meyerhof B.C equation is:

qult = cNcscdcic + Nqsqdqiq  s d i

From table 4-4 and for = 300, we have Nc = 30.13,  Nq = 18.4   and N = 15.7
Since c = 0, any factors with subscript c do not
need computing.

   for > 100

where Kp = tan2 (45 + /2) = tan2 (45 + 30/2) = 3.0

  sq = s = 1 + 0.1 x 3 x = 1.3

for > 100

    dq = d = 1 + 0.1 = 1.097 1.1

for any 
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      iq = ( 1 -   = 0.605 

 
                                                  for   > 0 
 

      i  = ( 1 -   = 0.111 

 
 = D x  = 0.7 x 18 = 12.6 kN/m2

qult = 12.6 x 18.4 x 1.3x 1.1 x 0.605 + 0.5 x 18 x 1.25 x  15.7 x 1.3 x 1.1 x 0.111 = 200.5 + 28.03 
     = 228.3 kN/m2 
 
qa = 228.3/3 = 76.2 kN/m2 

Q = qa x B x L = 76.2 x 1.252 = 119 kN 
 
Example 4-4: 
Given: A series of unconfined compression tests in the zone of interest (from SPT samples) 
from a boring-log give an average qu = 200 kPa. The soil is fully saturated (  = 0) 
 
Required: Estimate the allowable bearing capacity for square footings located at somewhat 
uncertain depths ( let D =0 m) and B dimensions unknown using both the Meyerhof and 
Terzaghi bearing-capacity equations. Use safety factor SF = 3.0. 
 
Solution: (The reader should note this is the most common procedure for obtaining the 
allowable bearing capacity for cohesive soils with limited data.) 
 
a:  By Meyerhof equations, 
     from table 4.1   
 

 
    

       c = qu/2  (for both equations)    

    from table 4.3   sc = 1 + 0.2 Kp          

     Kp = tan2 (45 + / 2) =  tan2 (45)  = 1.0 
 
    sc = 1.2 

  
   dc = 1. + 0 =1.0 
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b. By Terzaghi equations, we can take sc = 1.3 for = 0. 

 
 

 
FOOTINGS WITH ECCENTRIC 
OR INCLINED LOADINGS 
A footing may be eccentrically loaded from a concentric column with an axial load and moments 
about one or both axes as in Fig. 4-4. The eccentricity may result also from a column that is 
initially not centrally located. 
 
Footings with Eccentricity 
Research and observation [Meyerhof and Hansen] indicate that effective footing dimensions 
obtained (refer to Fig. 4-4) as 
 
L' = L-2ex            B' = B- 2ey  
 
should be used in bearing-capacity analyses to obtain an effective footing area defined as  
  
Af = B'L'   
 
and the center of pressure when using a rectangular pressure distribution of q' is the center of area 
B'L' at point A'; i.e., from Fig 4-4a: 
 
      2ex + L' = L 
        ex + c = L/2 
 
Substitute for L and obtain c = L'/2. If there is no eccentricity about either axis, use the actual 
footing dimension for that B' or L'. 
     
For design the minimum dimensions (to satisfy ACI 318 code) of a rectangular footing with a 
central column of dimensions wx wy are required to be 
 
Bmin = 4ey + wy              B' = 2ey + wy 
Lmin = 4ex + wx             L' = 2ex + wx 
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Final dimensions may be larger than Bmin or Lmin based on obtaining the required allowable 
bearing capacity. 
The ultimate bearing capacity for footings with eccentricity, using Hansen/Vesic equations, is 
found by either the Hansen or Vesic bearing-capacity equation given in Table 4-1 with the 
following adjustments: 

   

      
                

Figure 4-4.  Method of computing effective footing dimensions when footing is eccentrically 
loaded for rectangular bases. 

                                                                       
a. Use B' in the BN  term. 
b. Use B' and L' in computing the shape factors. 
c. Use actual B and L for all depth factors. 
The computed ultimate bearing capacity qult is then reduced to an allowable value qa with an 
appropriate safety factor SF as 
     
   qa = qult/SF (and Pa = qaB'L') 
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Example 4-5. A square footing is 1.8 X 1.8 m with a 0.4 X 0.4 m square column. It is loaded 
with an axial load of 1800 kN and Mx = My =   Undrained triaxial tests 
(soil not saturated) give  = 36° and c = 20 kPa. The footing depth D = 1.8 m; the soil unit weight 
 = 18.00 kN/m3; the water table is at a depth of 6.1 m from the ground surface. 

Required: What is the allowable soil pressure, if SF = 3.0, using the Hansen bearing-capacity 
equation with B', L'? 

Solution. See Fig. E4-5. 
ey = 450/1800 = 0.25 m            ex = 360/1800 = 0.20 m 
 
Both values of e are < B/6 = 1.8/6 = 0.30 m. Also 
Bmin = 4(0.25) + 0.4 = 1.4 < 1.8 m given 
Lmin = 4(0.20) + 0.4 = 1.2 < 1.8 m given 

Now find 
 
B' = B - 2ey = 1.8 - 2(0.25) = 1.3 m  
L' = L - 2ex = 1.8 - 2(0.20) = 1.4 m (L' > B') 

By Hansen's equation.  
 
From Table 4-4 at  = 36° and rounding to integers, we obtain 
Nc = 51     Nq = 38     N  = 40 
Nq/Nc = 0.746                               2tan  (1-sin )2 = 0.247 
 
Compute D/B = 1.8/1.8 = 1.0 
Now compute 
 
sc = 1 + (Nq/NC)(B'/ L') = 1 + 0.746(1.3/1.4) = 1.69 
dc = 1 + 0.4D/B = 1 + 0.4(1.8/1.8) = 1.40 
sq = 1+ (B'/L' ) sin  = 1 + (1.3/1.4) sin 36° = 1.55 
dq = 1 + 2 tan  (l - sin )2 D/B = 1 + 0.247(1.0) = 1.25 
s = 1  0.4 B'/ L'  = 1  0.4 x 1.3/1.4 = 0.62 > 0.60    (O.K.) 
d  = 1.0 
All    ii = gi = bi = 1.0 (not 0.0) 
The Hansen equation is given in Table 4-1 as 
qult = c Nc sc dc +  Nq sq dq  N  s  d                                      
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Inserting values computed above with terms of value 1.0 not shown (except d ) and using                

B' = 1.3, we obtain

qult = 20(51)(1.69)(1.4) + 1.8(18.0)(38)(1.55)(1.25)
                                      + 0.5(18.0)(1.3)(40)(0.62)(1.0)

      = 2413 + 2385 + 290 = 5088 kPa

For SF = 3.0 the allowable soil pressure qa is

qall 1700 kPa
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The actual soil pressure is 

 

 
Note that the allowable pressure qall is very large, and the actual soil pressure qact is also large. 
With this large actual soil pressure, settlement may be the limiting factor. Some geotechnical 
consultants routinely limit the maximum allowable soil pressure to around 500 kPa in 
recommendations to clients for design whether settlement is a factor or not. Small footings with 
large column loads are visually not very confidence-inspiring during construction. 
 
 
BEARING CAPACITY FROM SPT 
 
The SPT is widely used to obtain the bearing capacity of soils directly. One of the earliest 
published relationships was that of Terzaghi and Peck. This has been widely used, but these 
curves were overly conservative. Meyerhof published equations for computing the allowable 
bearing capacity for a 25-mm settlement. These were also very conservative.  
Joseph E. Bowels adjusted the equations to obtain the following: 
 

 
 
where  
           qnet = allowable bearing pressure for H0 = 25-mm, kPa  
 

          Fd = 1 + 0.33  < 1.33 [as suggested by Meyerhof] 

         B = foundation width, in meters  
          Se = settlement, in mm.  
 
In these equations the allowable soil pressure is proportional to settlement. In general the 

Hj  is 
 

   where H0 = 25 mm. 
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Example 4-12 

Given. The average N60 blow count = 6 in the effective zone for a footing located at D = 1.6 m 
(blow count average in range from 1- to 4-m depth). 
 
Required. What is the allowable bearing capacity for a 40-mm settlement? Present data as a 
table of qa versus B. 
 
Solution. From Figure 3.17 we can see Dr is small, soil is "loose," and settlement may be a 
problem.  
Should one put a footing on loose sand or should it be densified first? 
 (including Fd) on a programmable calculator or personal computer and obtain the table, which 
can be plotted as required. 
  

for B = 1 m              Fd = 1 + 0.33  =1.528> 1.33  take   Fd = 1.33   O.K 

 
 B < 1.2 mm 

   

             qnet =  x 1.33 x (  ) = 255.36 kN/m2 

 

For example for B = 2 m              Fd = 1 + 0.33  =1.264 < 1.33 O.K 

 
 

qnet =  200.6 kN/m2 

 

for B = 3 m  Fd = 1 + 0.33  =1.176 < 1.33 O.K 

 

 qnet = 170.72 kN/m2 

              
for B = 4 m     Fd = 1.32   and  qnet = 157 kN/m2 

 
B (m)     1    2     3    4 
qnet (kPa) 255.4 200.6 170.7 157 

 


