

Department of Anesthesia Techniques

Arterial BLOOD GASES

Dr. Mohammed Sami Mohammed.sami.hasan@uomus.edu.iq

ACID-BASE BALANCE

- An **acid** is a <u>proton donor</u> and a **base** is a <u>proton</u> <u>acceptor</u>.
- Physiologically, there are two groups of important acids:
- Carbonic acid (H₂CO₂)
- o Non carbonic acid

CARBONIC ACID (H2CO2)

- Carbonic acid comes from CHO and fat metabolism and results in 15,000 mmol of CO2/day. Carbonic acid metabolism is mostly handled by respiration. Recall:
- o CO2 + H20 → H2CO3

Acid-Base Regulation

- Three mechanisms to maintain pH –Respiratory (CO2)
 - –Buffer (in the blood: carbonic acid/bicarbonate, phosphate buffers, Hb)
 - -Renal (HCO₃⁻)

BUFFERS

- A buffer is a substance that can give or accept protons
- i.e. **H+,** in a manner that tends to *minimise changes* in the **pH** of the solution.
- Usually buffers are composed of a **weak acid** (proton donor) and a **weak base** (proton acceptor) as shown in the following equation.

$$[HA] \longleftrightarrow [H^+] + [A^-]$$

REGULATION

- The process of acid-base regulation involves:
- 1. Chemical buffering by intracellular and extracellular buffers
- 2. Control of pCO2 by normal respiratory function
- 3. Control of HCO3- concentration and acid excretion by the kidney

THE RENAL FUNCTION

- Reabsorb filtered HCO3- (therefore, avoid HCO3⁻ loss)
- Regenerate HCO3⁻ in an amount <u>equal to that used as</u> <u>buffer</u>

Respiratory Function

 the respiratory system is able to compensate for changes in the acid/base balance by increasing or decreasing ventilatory rate.

• This would result in an increase or decrease of PCO₂ in the blood. Thus changes are compensated at cost, i.e. changes in the bicarbonate pool.

DEFINITION

It is a diagnostic procedure in which a blood is obtained from an artery directly by an arterial puncture or accessed by a way of arterial catheter

INDICATION

- 1. Assess patient ventilation (PCO₂), oxygenation (PO₂) and acid base balance
- 2. Monitor gas exchange and acid base abnormalities for patient on **mechanical ventilator**
- 3. To evaluate response to clinical intervention and diagnostic evaluation (**oxygen therapy**)
- 4. In patient with respiratory rate is increased or decreased or when the person has very high blood sugar levels, a severe infection, or heart failure

ABG COMPONENT

<u>**PH:**</u>

measures hydrogen ion concentration in the blood, it shows blood' acidity or alkalinity

<u>PCO₂:</u>

It is the partial pressure of CO_2 that is carried by the blood for excretion by the lungs, known as respiratory parameter

<u>PO₂:</u>

It is the partial pressure of O2 that is dissolved in the blood , it reflects the body ability to pick up oxygen from the lungs

<u>HCO₃ :</u>

It is metabolic indicator it reflects the kidney's ability to retain and excrete bicarbonate **NORMAL VALUES:**

PH = 7.35 - 7.45

PCO2 = 35 - 45 mmhg

PO2 = 80 - 100 mmhg

HCO3 = 22 - 28 meq/L

Acidosis – presence of a process which tends to lower pH by gain of H⁺ or loss of HCO_3 Alkalosis – presence of a process which tends to raise pH by loss of H+ or addition of HCO3-

• Acidemia results when the blood pH is less than 7.35

• Alkalemia results when the blood pH is greater than 7.45

Metabolic – processes which lead to acidosis or alkalosis through their effects on the kidneys and the consequent disruption of H+ and HCO3- control **Respiratory**: processes which lead to acidosis or

alkalosis through a primary alteration in ventilation and resultant excessive elimination or retention of CO2

ACID BASE BALANCE

pH is maintained within a narrow range to preserve normal cell function

 ■ Buffers minimize the change in pH resulting from production of acid → provides immediate protection from acid
■ The primary buffer system is HCO₃⁻ HCO₃⁻+ H⁺ ↔ H₂CO₃ ↔ H₂O + CO₂

PREPARATION FOR ABG SAMPLE:

- Explain the procedure to the patient
- If not using hepranized syringe , hepranize the needle
- o Perform Allen's test
- Wait at least 20 minutes before drawing blood for ABG after initiating, changing, or discontinuing oxygen therapy, or settings of mechanical ventilation, after suctioning the patient or after Extubation.

ALLEN'S TEST

It is a test done to determine that collateral circulation is present from the ulnar artery in case thrombosis occur in the radial

SITES FOR OBTAINING ABG

- Radial artery
- Brachial artery
- Femoral artery
- Radial is the <u>most preferable</u> site used because:
 - o It is easy to access
 - It is not a deep artery which facilitate palpation, stabilization and puncturing
 - The artery has a collateral blood circulation

- Insert needle at 45 radial ,60 brachial and 90 femoral
- Withdraw the needle and apply digital pressure
- Check bubbles in syringe
- Place the capped syringe in the container <u>of ice immediately</u>
- Maintain firm pressure on the puncture site for 5 minutes, if patient has coagulation abnormalities apply pressure for 10 – 15 minutes

FOLLOW UP PHASE:

- Send labeled, iced specimen to the lab immediately
- Palpate the pulse distal to the puncture site
- Assess for cold hands, numbness, tingling or discoloration
- Documentation include:
 - results of Allen's test
 - time the sample was drawn
 - temperature
 - puncture site
 - time pressure was applied
 - O2 therapy is there

COMPLICATION

- Arteriospasm
- Hematoma
- Hemorrhage
- o Distal ischemia
- Infection
- Numbness