Almustaqbal University College

Medical Laboratories Techniques Department

First year students

Subject: General chemistry 1 - Lecture 2A

Lecturer: Assistant professor Dr. SADIQ . J. BAQIR

Expressing concentrations By chemical units:

The mole:

Is a unit for the amount of a chemical species , always associated with a chemical formula and represents Avogadro's number (6.022×10^{23}) of particles and represented by that formula .

<u>Molar Mass</u>: Is the mass in grams of 1 mole of the substance, it is calculated by summing the atomic masses of all the atoms appearing in a chemical formula.

$Molar mass = \sum atomic mass$

Example :- Molar mass of glucose $C_6H_{12}O_6$:

$$M_{C_6H_{12}O_6} = \sum (6mole\; carbon + 12mole\; hydrogen + 6mole\; oxygen) atom$$

$$M_{C_6H_{12}O_6} = 6 \ x12.0 + 12 \ x \ 1.0 + 6 \ x \ 16.0 = 180 \ g \ / mole$$

Important Relations:-

M.wt = g / mole or mg / mmole

No. of moles =
$$\frac{\text{wt}(g)}{\text{M. wt}(g)}$$

Wt (g) = No. of moles x M.wt

Mole = 10^3 mmole , mmole = 10^{-3} mole

Example1: How many grams of Na^+ (M.wt = 22.99 g /mol) are contained in (25 gm) of Na_2SO_4 (M.wt = 142.0 g /mol)?

Solution:

$$Na_2SO_4 \longrightarrow 2Na^+ + SO_4^{2-}$$

1mole 2mole 1mole

moles of
$$Na_2SO_4$$
 $(n_{Na_2SO_4}) = \frac{Wt_{(g)}Na_2SO_4}{M.Wt_{(g)}Na_2SO_4} = \frac{25.0}{142.0} = 0.176$

No. of moles of Na⁺(n_{Na^+})= Number of moles $Na_2SO_4 \times 2$

No. of moles of Na⁺ (n_{Na}^+) = 0.176 x 2 = 0.352 moles Na⁺

Wt (g) = No. of moles x M.wt

Weight of $Na^+(g) = \text{moles } Na^+ \times 22.99(g) Na^+$

Weight of $Na^+(g) = 0.352 \times 22.99 = 8.10 (g) Na^+$

Hints

-No. of moles of Na⁺ (n_{Na}^+) in NaCl is = 1 x No. of moles of NaCl as

NaCl
$$\longrightarrow$$
 Na⁺ + Cl⁻

1 mole 1 mole

No. of moles of Na⁺ (n_{Na}^+) in Na₃PO₄ is = 3 x No. of moles of Na₃PO₄ as

$$Na_3PO_4 \longrightarrow 3Na^+ + PO_4^{3-}$$

1 mole 3 mole

Exercise:

How many grams of Na⁺ (22.99 g /mol) are contained in 25 g of Na₃PO₄ (164 g /mol)?

Exercise:

- 1. No. of moles of $K^+(n_{k+})$ in $K_2SO_4 = ?$
- 2. No. of moles of $K^+(n_{k+})$ in $KNO_3 = ?$
- 3. No. of moles of $Mg^{2+}(n_{Mg^{2+}})$ in $MgSO_4 = ?$
- 4. No. of moles of Fe³⁺ ($n_{\text{Fe}3+}$) in **FeCl**₃ = ?
- 5. No. of moles of $Cl^{-}(n_{Cl-})$ in **FeCl**₃ = ?

Molar concentration (M):

Molarity: Number of moles of solute per liter of solution Or number of mmoles of solute per milliter of solution.

$$\mathbf{M} = \frac{\text{number of moles of solute}}{\text{volume of solution(liter)}}$$

Or
$$M = \frac{\text{number of mmole of solute}}{\text{volume of solution mL}}$$

Molarity calculations:

$$Molarity(M) = \frac{No.of moles}{volume(L)} = \frac{\frac{wt_{(g)}}{M.wt}}{V_L}$$

$$Molarity(\ M) = \frac{wt_{(g)}}{\text{M.wt x V}_L} \qquad \qquad V_L = \frac{v_{mL}}{\text{1000}}$$

Molarity(
$$M$$
) = $\frac{wt_{(g)}}{M.wt x \frac{VmL}{1000}}$

$$Molarity(M) = \frac{wt_{(g)} \ x \ 1000}{M. \ wt \ x \ V_{mL}}$$

Example: calculate the molar concentration of KNO₃ aqueous solution that contains (2.02 g) of KNO₃ (101 g /mole) in (2.0 L) of solution?

Solution:

$$Molarity(\ M) = \frac{wt_{(g)}}{\text{M.wt x V}_L} = \frac{2.02_{(\ g\)}}{101\,\text{x }2.0\,\text{L}} = \ 0.\ 1\ M$$

or

$$Molarity(M) = \frac{wt_{(g)} \, x \, 1000}{\text{M.wt} \, x \, V_{mL}} \quad = \frac{2.02_{(g)} \, x \, 1000}{101 \, x \, 2000 \, mL} = 0. \, 1 \, \, M$$

Preaparation of molar solutions

<u>Molarity</u> represents the number of moles of solute in one liter of solution or number of mmole in one mililiter.

e.g: a sulfuric acid(98 g/mol) solution that has an analytical concentration of (1.0M) can be prepared by dissolving (1.0 mole) or (98 g) of H_2SO_4 in water and dilution to exactly (1.0 L).

{ Molarity(M) =
$$\frac{No.of\ moles}{Vol.(L)} = \frac{1\ mole}{1\ L} = 1M$$
 }

* Example: Describe the preparation of (2.00 liter) of (0.18 M) BaCl₂ from BaCl₂.2H₂O (244.3 g/mole).

Solution:

$$BaCl2.2H2O \rightarrow BaCl2 + 2H2O$$
1mole 1mole 2mole

Each (1mole BaCl_{2.}2H₂O) gives (1 mole BaCl₂).

for 2 liter solution we have

$$Molarity(M) = \frac{No.of\ moles}{volume(L)}$$

No. of moles = molarity $M \times Volume(L)$

No. of moles $BaCl_2$ in Solution = 0.18 $\frac{moles\ BaCl_2}{L}$ x 2.00 L = 0.36mole (BaCl₂)

Then No. of moles $BaCl_2.2H_2O$ needed = 0.36 moles

The mass of $(BaCl_2.2H_2O) = 0.36$ mole x 244.3 g /mol = 87.95 g BaCl₂.2H₂O

The solution is prepared by dissolving 87.95gm BaCl₂.2H₂O in water and complete the volume to 2.00 L

Example:

Describe the preparation of 500 mL of 0.0740 M Cl⁻ solution from solid BaCl₂ (208 g/mol).

Solution:

$$BaCl_2 \rightarrow Ba^{2+} + 2Cl^{-}$$

1 mole 2 moles

No of moles = Molarity (mol / liter) x Volume (Liters)

moles $Cl^{-} = 0.0740 \times 0.5 = 0.037 \text{ moles } Cl^{-}$

No.of moles BaCl₂ needed = $\frac{1}{2}$ (No. of moles of Cl⁻)

No .moles BaCl₂ needed = $\frac{0.037}{2}$ = 0.0185 mole

weight of $BaCl_2 = No.$ of moles $BaCl_2 \times M$ wt (208)

weight of $BaCl_2 = 0.0185 \times 208 = 3.85 \text{ grams}$

Then the required solution is prepared by dissolving 3.85~g of $BaCl_2$ in water and dilute to 0.500~L (500~mL).

Example:

Calculate the number of molecules (particles) of NaCl (58.5 g/mol) present in 1liter of 0.1 M solution.

Answer:

Each 1 mole contains Avogadro's number (6.022×10^{23}) of molecules then

No. of moles = Molarity(M) x V(liter) = 0.1 x 1= 0.1 mole

No. of moles =
$$\frac{No.of\ molecules}{6.02 \times 10^{23}}$$

No. of molecules = No. of moles x 6.02 x 10^{23} = 0.1 x 6.02 x 10^{23} No. of molecules = 6.02 x 10^{22} molecules

Excercise:

Describe the preparation of 700 mL of 0.0740 M Cl⁻ solution from solid BaCl₂.2H₂O (244.3 g/mol).

Conversion to molarity:

1. Conversion of $\left(\frac{w}{v}\right)\%$ to Molarity(M)

Molarity (M) =
$$\frac{\left(\frac{w}{v}\right)\% \times 10}{M.wt}$$

2. Conversion of Molarity(M) to mmol/L

$$mmol/L = Molarity(M) \times 1000$$

3. Conversion of mmol/L to mg/dl

$$C_{mg/dl} = \frac{mmol/dl \times Mwt}{10}$$

Example:

Calculate the concentration of the solution that is 20(w/v)% of KCl (74.5 g /mol) in: a. Molarity(M) b. mmol/L c. mg/dl

solution:

a.

Molarity(M) =
$$\frac{\left(\frac{W}{V}\right)\% x10}{M. wt}$$

Molarity(M) =
$$\frac{20 \times 10}{74.5}$$
 = 2.68 M

طريقه ثانيه للحل

$$Molarity(M) = \frac{wt_{(g)} \, x \, 1000}{M.wt \, x \, V_{mL}} \; = \; \frac{20_{(g)} \, x \, 1000}{74.5 \, x \, 100_{mL}} = 2.68 \; M$$

b.
$$C_{\text{mmol/L}} = Molarity(M) \times 1000$$

 $C_{\text{mmol/L}} = 2.68 \times 1000 = 2680 \text{ mmol/L}$

c.
$$C_{mg/dl} = \frac{mmol/dl \times Mwt}{10} = \frac{2680 \times 74.5}{10} = 19966 \text{ mg/dl}$$

 $C_{mg/dl} = 19966 \text{ mg/dl}$

Exercises:

- 1. Which of the following contains the largest number of molecules :
 - a) 66g of CO₂ (44 g/mol)
 - b) 80 g of NaOH (40 g/mol)
 - c) 32 g of CH₃OH (32 g/mol)
- 2. Describe the preparation of 500 mL of 0.0740 M Cl^- aqueous solution from solid CaCl₂.2H₂O (147 g/mol).
- 3. Calculate the weight in grams of solid K_2SO_4 (174.26 g/mol) required to prepare 500 mL of 0.04 M aqueous solution of K^+ .
- 4. Calculate the weight in grams of solid NaCl (58.5 g/mol) required to prepare 250 mL of 0.04 M aqueous solution of Na⁺.
- 5. Calculate the concentration of the solution that is 5(w/v)% of NaCl (58.5 g /mol) in: a. Molarity(M) b. mmol/L c. mg/dl