Computer Network Protocols Network Layer (Part 1) Lesson 1

Introduction

- network layer it's the third layer of OSI reference model which is responsible about routing of data from one network to another network choosing the best path from the routing table.
- Routing table consist of only the best routes for every destinations.

The main functions of network layer

- Routing: determine route taken by packets from source to destination.
- Forwarding: move a packet from router's input to appropriate router output.

Types of Routing

Static	- It is configure by Administrator manually - Need for destination network ID - It is secure and fast - Used for small organization which have network of 10-15 routers
Dynamic	- Means automatically routing - Dynamic routes means that the router learns of paths of destinations by receiving periodic updates from other routers - Is automatically choose the best shortest path - Can be done by using routing protocol
Default	- Is configured for unknown destination - When there is no entry for the destination network in a routing table, the router will forward the packet to its default router. - It is last preferred routing

Routing Algorithm

The routing algorithm is that part of the network layer software responsible for deciding which output line an incoming packet should be transmitted on. Routing algorithms can be grouped into two major classes: Static (non-adaptive) and dynamic (adaptive).

Non adaptive algorithms (static routing)	Adaptive algorithms (dynamic routing)	
Do not base their routing decisions on measurements or	Change their routing decisions to reflect changes in the topology, and	
estimates of the current traffic and topology. usually the traffic as well.		
- It is called static algorithm.	\bullet	It is called dynamic.

Static Algorithm

| | \bullet
 A simple local technique, where each router must make decisions based on local
 knowledge, not the complete picture of the network. |
| :--- | :--- | :--- |
| Flooding | Is a simple algorithm to send a packet along all paths (Every incoming packet is sent
 out on every outgoing line except the one it arrived on). |
| •Generates infinite number of duplicate packets unless some measures are taken to
 damp the process. | |
| -One such measure is to have a hop counter in the header of each packet, which is
 decremented at each hop, with the packet being discarded when the counter reaches
 zero | |
| Routing Path | Shortest path routing first developed by Dijkstra algorithm.
 • Find the shortest path from a specified source to all other destinations in the
 network. |
| In the general case, the labels on the lines could be computed as a function of the
 distance, bandwidth, average traffic, communication cost, measured delay, and other
 factors. | |

Statio Algorithm

Example 1: Find the shortest path from router A to router H?

Figure The first six steps used in computing the shortest path from A to D. The arrows indicate the working node.

Pnal Of Lesson 1

Thanks Bor instening

