المادة: الرباضيات

المرحلة: الاولى

المحاضر: م.م رباض حامد

Lecture (3)

(تركيب الدوال) :Composition of Functions

DEFINITION: If f and g are functions, the composite $(f \circ g)$ ((f composed with g)) or $g \circ f$ ((g composed with f)) are defined by: $(f \circ g)(x) = f(g(x))$ and $(g \circ f)(x) = g(f(x))$ respectively

Examples 1: Find the formula for (f o g)(x) and $(g \circ f)(x)$ if $g(x) = x^2$ and $f(x) = x^2$ x - 7,

then find the value of f(g(2)) and g(f(2)).

A: $(f \circ g)(x) = f(g(x)) = f(x^2) = x^2 - 7$.

 $f(g(2))= 2^2 - 7 = -3.$

B: $(g \circ f)(x) = g(f(x)) = g(x - 7) = (x - 7)^2$.

 $g(f(2))=(2-7)^2=(-5)^2$.

Examples 2: Find the formula for (f o g)(x) and $(g \circ f)(x)$ if $f(x) = x^2 + 1$ and $g(x) = \sqrt{x}$.

then find the value of f(g(3)) and g(f(3)).

A: $(f \circ g)(x) = f(g(x)) = f(\sqrt{x}) = (\sqrt{x})^2 + 1 = x + 1$.

f(g(3)) = 3 + 1 = 4.

B: $(g \circ f)(x) = g(f(x)) = g(x^2 + 1) = \sqrt{x^2 + 1}$.

 $g(f(3)) = \sqrt{3^2 + 1} = \sqrt{10}$.

H.W: Finding formulas for composites If f(x) = x and g(x) = x + 1,

Find:

(a) $(f \circ g)(x)$ (b) $(g \circ f)(x)$ (c) $(f \circ f)(x)$ (d) $(g \circ g)(x)$

المادة: الرباضيات

المرحلة: الاولى

المحاضر: م.م رياض حامد

2021-2022

(الدالة الفردية والدالة الزوجية):Even Function, Odd Function

A function y = f(x) is an

even function of x if
$$f(-x) = f(x)$$

odd function of x if
$$f(-x) = -f(x)$$

for every x in the function's domain.

Examples: Recognizing Even and Odd functions

1)
$$f(x) = x^2$$

$$f(-x) = (-x)^2 = x^2$$

$$-f(x) = -(x)^2$$

Even function

2)
$$f(x) = x^2 + 1$$

$$f(-x) = (-x)^2 + 1 = x^2 + 1$$

$$-f(x) = -(x)^2 - 1$$

Even function

3)
$$f(x) = x$$

$$\mathbf{f}(-\mathbf{x}) = -\mathbf{x}$$

$$-\mathbf{f}(\mathbf{x}) = -\mathbf{x}$$

odd function

$$4) f(x) = x + 1$$

$$f(-x) = -x + 1$$

$$-f(x) = -x - 1$$

Not Even function , Not odd function

المادة: الرياضيات

المرحلة: الاولى

المحاضر: م.م رياض حامد

2021-2022

5)
$$f(x) = x - 1$$

 $f(-x) = -x - 1$

$$-\mathbf{f}(\mathbf{x}) = -\mathbf{x} + \mathbf{1}$$

Not Even function , Not odd function

$$6) f(\mathbf{x}) = \mathbf{x}^3$$

$$f(-x) = (-x)^3 = -(x)^3$$

$$-f(x) = \frac{-(x)^3}{}$$

Odd function

H.W:

1)
$$f(x) = x^3 - 3$$
.

2)
$$f(x) = x^3 + x^2 - 3$$

$$3) f(\mathbf{x}) = \mathbf{x}^2 - \mathbf{x}$$

$$4) f(\mathbf{x}) = \frac{1}{x}$$

المادة: الرياضيات

المرحلة: الاولى

المحاضر: م.م رياض حامد

2021-2022

A CALL COMMISSION AND A STATE OF A STATE OF

symmetry of the function (تماثل الدالة)

If f(x,y) = 0 is any function then:

- 1. Symmetry about x-axis: If f(x,-y) = f(x,y)
- 2. Symmetry about y-axis: If f(-x,y) = f(x,y) It is called an **even function.**
- 3. Symmetry about the origin: If f(-x,-y) = f(x,y) It is called an **odd function**

Examples: Check the symmetry of the following curves:

1)
$$y = x^2$$

Sol \ f(x, y) =
$$x^2 - y = 0$$

$$f(x, -y) = x^2 - (-y) = x^2 + y$$
 $\implies f(x, -y) \neq f(x, y)$ **NOT OK**

$$f(-x,y) = (-x)^2 - (y) = x^2 - y$$
 $\implies f(-x,y) = f(x,y)$ OK

$$f(-x, -y) = (-x)^2 - (-y) = x^2 + y$$
 $f(-x, -y) \neq f(x, y)$ **NOT OK**

So the function has symmetry only about y-axis. It is called an even function.

المادة: الرباضيات

المرحلة: الاولى

المحاضر: م.م رياض حامد

Lecture (3)

2021-2022

2)
$$y = x^3$$

Sol \
$$f(x,y) = x^3 - y = 0$$

$$f(x, -y) = x^3 - (-y) = x^3 + y$$
 $\implies f(x, -y) \neq f(x, y)$ **NOT OK**

$$f(-x,y) = (-x)^3 - (y) = -x^3 - y$$
 \implies $f(-x,y) \neq f(x,y)$ **NOT OK**

$$f(-x, -y) = (-x)^3 - (-y) = -\frac{x^3 + y}{} = \frac{x^3 - y}{}$$

 $f(-x, -y) = f(x, y) \quad \mathbf{OK}$

So the function has symmetry only about origin. It is called an odd function.

3)
$$x^2 = y^2 + 4$$

Sol \ f(x,y) =
$$y^2 - x^2 + 4 = 0$$

$$f(x,-y) = (-y)^2 - x^2 + 4 = y^2 - x^2 + 4$$
 $\implies f(x,-y) = f(x,y)$ OK

$$f(-x,y) = y^2 - (-x)^2 + 4 = y^2 - x^2 + 4$$
 \implies $f(-x,y) = f(x,y) OK$

$$f(-x, -y) = (-y)^2 - (-x)^2 + 4 = y^2 - x^2 + 4 \implies f(-x, y) = f(x, y)$$
 OK

So the function has symmetry about x-axis, y-axis and the origin.

H.W:

1)
$$y = 3 x^2 + 2$$
.

2)
$$x^2 + y^2 = 1$$