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Chapter seven

Application of integrals 

7-1- Definite integrals:
If )x(f is continuous in the interval bxa    and it is 

integrable in the interval then the area under the curve:-

)a(F)b(F)x(Fdx)x(f
b

a

b

a



where )x(F is any function such that  )x(f)x(F    in 
the interval. 

Some of the more useful properties of the definite integral are:-

 









 



















b

a

b

a

b

a

a

a

b

c

c

a

b

a

b

a

a

b

b

a

b

a

b

a

b

a

b

a

dxg(x)dxf(x)  then  bxa  for  g(x)f(x)If  )7

0dxf(x)  then  bxa  for0  f(x)If  )6

0dxf(x)  )5

dxf(x)dxf(x)dxf(x)  then  bca  Let  )4

dxf(x)dxf(x)  )3

g(x)dxf(x)dxdxg(x)f(x)  )2

constant.isc     where  ,    dxf(x)cdxf(x)c   )1





٢

EX-1 – Evaluate the following definite integrals:
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7-2- Area between two curves:
         Suppose that )x(fy 11  and )x(fy 22  define two functions 
of   x  that are continuous for bxa  then the area bounded above 
by the 1y   curve, below by 2y curve and on the sides by the vertical 
lines ax  and bx  is:-

                                              dx)x(f)x(fA
b

a

21 

EX-2- Find the area bounded by the x-axis and the curve:
2xx2y 

Sol.-   

 2,0 x    0)2x(x  
.....(2)   x2xy

....(1)..........    0y
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      The points of the intersection of the curve and the x-axis are (0,0)
and (2,0) then the area bounded by x-axis and the curve is:-
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EX-3- Find the area bounded by the y-axis and the curve:
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EX-4- Find the area bounded by the curve  2xy  and the line:
          xy 

Sol.-   

(1,1)(0,0),  pointsonintersecti                      
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EX-5- Find the area bounded by the curves  24 x2xy  and 
2x2y 

Sol.-   
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Notice:- We can use the double integration to calculate the area 
between two curves which bounded above by the curve )x(fy 2
below by )x(fy 1 on the left by the line ax  and on the right by 

bx  , then:-     

            
b

a

)x(f

)x(f

2

1

dxdyA

To evaluate above integrals we follow:-

(a) integrating  dy with respect to  y and evaluating the resulting 

integral the limits  )x(fy 1 and )x(fy 2 , then:
(b)integrating the result of  (a) with respect to  x  between the 

limits ax  and bx  .
If the area is bounded on the left by the curve )y(gx 1 , on the 

right by )y(gx 2 , below by the line cy  , and above by the line 
dy  , then it is better to integrate first with respect to  x  and then 

with respect to  y. That is:-
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EX-6- Find the area of the triangular region in the first quadrant 
bounded by the y-axis and the curve .xcosy,xsiny 
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EX-7-  Calculate:      dydx
x
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Sol.-   We cannot solve the integration 
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EX-8-  Write an equivalent double integral with order of 
integration reversed for each integrals check your answer 
by evaluation both double integrals, and sketch the region.
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7-3- Triple integrals (Volume):
Consider a region  N  in xyz-space bounded below by a surface  

)y,x(fz 1 , above by the surface  )y,x(fz 2 and laterally by a 
cylinder  c  with elements parallel to the z-axis. Let  A  denote the 
region of the xy-plane enclosed by cylinder  c  (that is, A  is the region 
covered by the orthogonal projection of the solid into xy-plane). Then 
the volume  V of the region  V  can be found by evaluating the triply 
iterated integral:-  
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dxdydzV

Let z-limits of integration indicate 
that for every (x,y) in the region A,Z  
may extend from the lower surface  

)y,x(fz 1 to the surface  
)y,x(fz 2 . The  y- and x-limits of 

integration have not been given 
explicitly in equation above, but are 
indicated as extending over the 
region  A. 
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We can find the equation of the boundary of the region A  by 
eliminating z  between the two equations )y,x(fz 1 and 

)y,x(fz 2 , thus obtaining an equation  )y,x(f)y,x(f 21  which 
contains no  z, and interpret it as an equation in the xy-plane. 

EX-9 The volume in the first octant bounded by the cylinder 
2y4x  , and the planes  .0z  ,0x  ,yz 

Sol.-
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EX-10 The volume enclosed by the cylinders  22 x4z,x5z    and 
the planes  .1yx   ,0y 

Sol.-
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EX-11 The volume enclosed by the cylinders  16z4y 22    and the 
planes  .4yx   ,0x 

Sol.-
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EX-12 The volume bounded by the ellipse paraboloids  22 y9xz    

and  .9yx18z 22 

Sol.-
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7-4- The length of a plane curve:-
The length of the curve  )x(fy 
from point A(a,c) to B(b,d) is:-  

                           dx)
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If  x  can be expressed as a function 
of  y then the length is:-
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Let the equation of motion be )t(gx  and )t(hy 
continuously differentiable for t between  B),at(tand)Aat(t ba

then the length of the curve is:-
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EX-13 – Find the length of the curve:
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EX-14 – Find the distance traveled between  0t  and  
2

t


   a 

particle  P(x,y)  whose position at time  t  is given by:-
tcostatsinay   and   tsintatcosax    where  a is a 

positive constant. 
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EX-15 – Find the length of the curve:-
                                 2t0  ;  tcos1y   nda   tsintx 
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7-5- The surface area:
Suppose that the curve )x(fy  is rotated about the x-axis. It 
will generate a surface in space. Then the surface area of the 
shape is:-     

                    dx)
dx

dy
(1y2S

b

a

2  

If the curve rotated about the y-axis, then the surface area is:-
                     

                     dy)
dy

dx
(1x2S

d

c

2  

If the curve sweeps out the surface is given in parametric form 
with x  and  y  as functions of a third variable  t  that varies 
from  ta  to  tb  then we may compute the surface area from the 
formula:-

                      dt)
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t

t

22  

where    is the distance from the axis of revolution to the 
element of arc length and is expressed as a function of  t.

EX-16 – The circle  222 ryx    is revolved about the x-axis. Find 
the area of the sphere generated. 

Sol.-
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EX-17 – Find the area of the surface generated by rotating the 

portion of the curve  2
3

)2x(
3

1
y 2     between  x=0  and  x=3  

about the  y-axis.

Sol.-
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EX-18 – The arc of the curve  
x4

1

3

x
y

3

   from  x=1  to  x=3  is 

rotated about the line  y= -1. Find the surface area generated. 

Sol.-
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EX-19 – Find the area of the surface generated by rotating the curve  
1t0    ,    ty    ,    tx 2      about the  x-axis.

Sol.-
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Problems – 7

1) Find the area of the region bounded by the given curves and lines 
for the following problems:-

1. The coordinate axes and the line ayx 

2. The x-axis and the curve xey  and the lines 1x  ,  0x 
3. The curve 0xy2  and the line 2xy 
4. The curves 2yx  and 2yy2x 
5. The parabola 2yyx  and the line 0yx 

)
3

4
.5;

3

1
.4;

2

9
.3;1e.2;

2

a
.1  :(ans.

2



2) Write an equivalent double integral with order of integration 
reversed for each integrals check your answer by evaluation both 
double integrals, and sketch the region. 
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2x e

1

2

lny

2
2

0

e

1
   

)
3

1
  ;dx  dy   :(ans.                              dydx   .2

1

0

x

0

1

0

1

y

2

  

)
3

8
  ;dx  dy y   :(ans.                      dydx y   .3

2

2

2

x4

0

2

0

2y4

2y4

2

2

2

  







3) Find the volume of the tetrahedron bounded by the plane  

1
c

z

b

y

a

x
   and the coordinate planes. 

                                                              )abc
6

1
  :(ans.

4) Find the volume bounded by the plane  0z    laterally by the 
elliptic cylinder   4y4x 22    and above by the plane 2xz  .

                                                              )4  :(ans. 



١٨

5) Find the lengths of the following curves:-

))11010(
27

8
  :(ans.                    (4,8)    to    (0,0)    from      xy  1. 2

3



)
6

53
  :(ans.          3x   to   1x    from        

4x

1

3

x
y  2.

3



)
32

123
  :(ans.          2y   to   1y    from      

8y

1

4

y
x  3. 2

4



))11010(
27

4
  :(ans.          1x   to0   x    from      4x1)(y  4. 32 

6) Find the distance traveled by the particle  P(x,y) between  t=0  and  

t=4  if the position at time  t is given by:  2
3

)1t2(
3

1
y    ;   

2

t
x

2



                                                                                )21  :(ans.

7) The position of a particle P(x,y) at time t is given by:  

t
2

t
y    ;   3)(2t

3

1
x

2
2
3

 . Find the distance it travel between  t=0  

and  t=3.                                                               )
2

21
  :(ans.

8) Find the area of the surface generated by rotating about the x-axis 
the arc of the curve     1x   and0   x    between     xy 3  .

                                                                             ))11010(
27

  :(ans. 


9) Find the area of the surface generated by rotating about the y-axis 
the arc of the curve     (2,4)   and    (0,0)    between     xy 2 .

                                                                             ))11717(
6

  :(ans. 


10) Find the area of the surface generated by rotating about the y-

axis the curve  1x0    ;    
2

1

2

x
y

2

 .      ))122(
3

2
  :(ans. 

11) The curve described by the particle P(x,y) t
2

t
y  ,  1tx

2

    

from  t = 0  to  t = 4  is rotated about the  y-axis. Find the surface area 
that is generated. 

                                                                  ))11313(
3

22
  :(ans. 
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