ALMUSTAQBAL UNIVERSITY COLLEGE

Medical Laboratories Techniques Department

Stage: First year students

 $Subject: General\ chemistry-part\ A\ -\ Lecture\ 3$

Lecturer: Assistant professor Dr. SADIQ . J. BAQIR

Normality (N)

Represents the number of equivalents contained in one liter solution or the number of milli equivalents of solute contained in one milliliter of solution.

$$Normality(N) = \frac{Number\ of\ equivalents\ of\ solute}{volume\ of\ solution(liter)}$$

$$Normality(N) = \frac{Number\ of\ milli\ equivalents\ of\ solute}{volume\ of\ solution(\ mL)}$$

e.g: 0.2 N HCl solution contains 0.2 equivalents (eq) of HCl in liter solution or 0.2 milli equivalent (meq) of HCl in each mL of solution .

Normality (N) =
$$\frac{Number\ of\ equivalents(solute)}{VL(solution)}$$

Number of equivalents (eq) =
$$\frac{wt(g)}{eq.wt(g)}$$

Normality (N) =
$$\frac{\frac{wt}{eq.wt}}{V(liter)}$$
 V(liter) = $\frac{V_{ml}}{1000}$

Normality (N) =
$$\frac{\frac{wt}{eq.wt}}{\frac{V(mL)}{1000}}$$

Normality (N) =
$$\frac{wt \times 1000}{eq.wt \times V(mL)}$$

Exercise: proof that Normality (N) = $\frac{wt \ x \ 1000}{eq.wt \ x \ V(mL)}$

الجواب: نكتب الاشتقاق (الخطوات الاربعه اعلاه)

Eq.wt =
$$\frac{Mwt}{\eta}$$

Normality (N) =
$$\frac{wt \ x \ 1000}{\frac{Mwt}{\eta} \ x \ V(mL)}$$

Normality (N) =
$$\frac{wt \times 1000}{\frac{Mwt \times V(mL)}{\eta}}$$

Normality (N) =
$$(\frac{wt \, x1000}{Mwt \, x \, V(mL)}) \eta$$

Normality (N) = Molarity (M) . η , or Molarity(M) = Normality(N) / η

e.g: Normality(N) of 1M KCl = $M \cdot \eta = 1 \times 1 = 1 \text{ N KCl}$,

Normality(N) of 1M HCl = $M \cdot \eta$ =1 x 1 = 1N HCl,

Normality(N) of 1 M $H_2SO_4 = M \cdot \eta = 1 \times 2 = 2 N H_2SO_4$,

Normality(N) of 1 M Na₂ CO₃ = M . η = 1 x 2 = 2N Na₂CO₃

I. Equivalent mass in neutralization reaction:

A) Equivalent mass of acids (Eq):-

Is the mass that either contribute or reacts with one mole of hydrogen ion in the reaction.

$$Eq = \frac{\textit{Mwt}}{\textit{number of } \textit{H}}$$

1. Mono protic acid e.g. (HCl, HNO₃, CH₃COOH) η =1

$$Eq = \frac{Mwt}{1}$$

Eq =
$$\frac{36.5}{1}$$
 = 36.5 for HCl

$$Eq = \frac{63}{1} = 63 \ for \ HNO_3$$

2. Diprotic acid e.g: $(H_2SO_4, H_2S, H_2SO_3) \eta = 2$

$$Eq = \frac{Mwt}{2} = \frac{98}{2} = 49$$
 for H_2SO_4

$$Eq = \frac{34}{2} = 17 \text{ for } H_2S$$

$$Eq = \frac{82}{2} = 41 \text{ for } H_2SO_3$$

B) Equivalent mass of Bases:

Is the mass that either contribute or reacts with one mole of OH in the reaction.

$$Eq = \frac{Mwt}{number\ of\ OH}$$

1. Mono hydroxy base $(\eta=1)$

e.g: NaOH

for KOH

Eq.
$$=\frac{Mwt}{1}=\frac{40}{1}=40$$

Eq. =
$$\frac{Mwt}{1} = \frac{56}{1} = 56$$

2. Di hydroxy base (η =2)

e.g: Ca(OH)₂ (74 g / mol)

Eq. =
$$\frac{Mwt}{2} = \frac{74}{2} = 37$$

$$Zn(OH)_2$$
 (99.4 g/mol)

Eq.
$$=\frac{Mwt}{2} = \frac{99.4}{2} = 49.7$$

Eq.
$$=\frac{Mwt}{2} = \frac{171.35}{2} = 85.67$$

II. Equivalent mass in (oxidation – reduction) reaction (Redox):

The equivalent mass of a participant in an (oxidation–reduction) reaction is that mass which directly produce or consume one mole of electron.

 η = numbers of electrons participate in oxidation - reduction processes (Redox)

Example:

$$2KMnO_4 + 10FeSO_4 + 8H_2SO_4 \quad \to \ 5Fe_2 \ (SO_4)_3 + 2MnSO_4 + K_2SO_4 + 8H_2O_4 + K_2SO_4 + 8H_2O_4 + K_2SO_4 + K_2SO_5 +$$

$$2MnO_4$$
 + $10Fe^{2+}$ + $8H$ $\rightleftharpoons 10Fe^{3+}$ + $2MnSO_4$ (acidic medium)

$$Mn^{7+}$$
 \rightarrow Mn^{2+} (5 e gain – reduction)

$$Fe^{2+}$$
 \rightarrow Fe^{3+} (1 e loss – oxidation)

Eq. of KMnO₄ =
$$\frac{Mwt}{5} = \frac{157.9}{5} = 31.6$$

III. Equivalent mass for salts:

Eq=
$$\frac{Mwt}{\eta}$$

 $(\eta) = \Sigma$ [no. of cations x its valency (cation charge)]

e.g:
$$AgNO_3$$
 ($AgNO_3 \rightarrow Ag+ + NO_3$)

$$(\eta = Ag^{+}(1) \times 1 = 1)$$

Eq.
$$=\frac{Mwt}{1}=\frac{170}{1}=170$$

e.g:
$$Na_2CO_3$$
 $(Na_2CO_3 \rightarrow 2 Na^+ + CO_3^-)$

$$(\eta = Na^{+}(2) \times 1 = 2)$$

Eq.
$$=\frac{Mwt}{2} = \frac{106}{2} = 53$$

e.g: BaSO₄ (Ba²⁺ + SO₄²⁻
$$\leftrightarrow$$
 BaSO₄)

$$\eta = Ba^{2+}(1) \times (2+) = 2$$

Mwt for $BaSO_4 = 233 \text{ g/mol}$

Eq.
$$=\frac{Mwt}{2}=\frac{233}{2}=116.5$$

e.g:
$$La(IO_3)_3$$
 ($La(IO_3)_3 \rightarrow La^{3+} + 3 IO_3^-$)

$$(\eta = La^{3+}(1) \times 3 = 3)$$

Eq.
$$=\frac{Mwt}{3}=\frac{663.6}{3}=221.1$$

e.g: KAI(SO₄)₂ (258 g/mol)

 $(\eta) = \Sigma$ [no. of cations x its valency (cation charge)]

no. of cations = $1 \text{ K}^+ + 1 \text{ Al}^{3+}$

$$\eta = K^{+}(1) \times (1+) + AI^{3+}(1) \times (3+) = 4$$

Eq.
$$=\frac{M.wt}{4} = \frac{258}{4} = 64.5$$

Example

Find the Normality of the solution containing 5.3 g/L of Na₂CO₃ (106 g/mol).

Solution:

To find η for Na₂CO₃ (η) = Σ [no. of cations x its valency(cation charge)]

No. of cations = 2Na+ while the cation charge for $Na^+=1$,

Then $(\eta) = 2 \times 1 = 2$

Eq. of Na₂CO₃ =
$$\frac{Mwt}{2} = \frac{106}{2} = 53.0 \text{ gm}$$

Normality (N) =
$$\frac{wt}{Eq. \ x \ VL}$$

Normality (N) =
$$\frac{5.3gm}{53.0 \ x \ 1L} = 0.1N$$

Second method:

Normality (N) =
$$(\frac{wt \, x1000}{Mwt \, x \, V(mL)}) \eta$$

Normality (N) =
$$(\frac{5.3 \times 1000}{106 \times 1000(mL)})$$
 2 = 0.1 N

Molality (m):

Molality is the number moles of solute contained in one kilogram of solvent.

e.g: If one mole of sugar is dissolved in one kg of distilled water then the concentration of solution is (1mol / kg) or one molali (1m).

Molality is calculated by the following mathematical relationship:

Molality (m) =
$$\frac{number\ of\ moles(solute)}{mass\ of\ solvent\ (\frac{g}{1000})}$$
 = $\frac{number\ of\ moles(solute)x\ 1000}{mass\ of\ solvent(g)}$

Example

Determine the molality of a solution prepared by dissolving 75 g of solid $Ba(NO_3)_2$ (261.32 g/mol) into 374 g of water.

Solution:

Molality (m) =
$$\frac{Number\ of\ moles(solute)x\ 1000}{mass\ of\ solvent\ (g)}$$

No of moles (solute) =
$$\frac{wt}{M.wt} = \frac{75.0 \text{ g}}{261.32 \text{ g/mol}} = 0.287 \text{ moles}$$

Molality (m) =
$$\frac{Number\ of\ moles(solute)x\ 1000}{mass\ of\ solvent(g)} = \frac{0.287\ mol\ x\ 1000}{374\ g}$$

Molality
$$(m) = 0.76$$

Example:

The mass of an aqueous solution that contains 11.7 g of NaCl (58.5 g/mol) is 551.7 g. Calculate the molality of the solution.

Solution;

Mass of solution = mass of solute + mass of solvent

Mass of solution = mass of solute (NaCl) + mass of solvent (H_2O)

Mass of solvent (H_2O) = Mass of solution - mass of solute (NaCl)

Mass of solvent (H₂O) = 551.7 g - 11.7 g = 540 g

No . of moles of NaCl =
$$\frac{mass(g)}{M.wt}$$

No . of moles of NaCl =
$$\frac{11.7}{58.5}$$
 = 0.2 mole

Molality (m) =
$$\frac{number\ of\ moles(solute)x\ 1000}{mass\ of\ solvent(g)}$$

Molality (m) =
$$\frac{0.2 \, mol \, x \, 1000}{540 \, g} = 0.37$$

Exercises:

- 1. Calculate the molality of the solution prepared by dissolving 36 g of glucose (180 g / mol) in 360 g of distilled water.
- 2. The mass of $620 \, g$ ethylene glycol ($C_2H_6O_2$)($62 \, g/mol$) is dissolved in $400 \, g$ of distilled water to prepare an antifreeze solution . Calculate the concentration of the solution in molality.

Mole fraction:

The number of moles of one component relative to the total number of moles of all components in the solution.

$$Mole \ fraction \ of \ solute(X_1) = \frac{\text{No.of moles of solute} \ (n_1)}{\text{mole of solute} \ (n_1) + \text{moles of solvent} \ (n_2)}$$

$$Mole \ fraction \ of \ solvent(X_2) = \frac{\text{No.of moles of solvent} \ (n_2)}{\text{moles of solute} \ (n_1) + \text{moles of solvent} \ (n_2)}$$

$$X_T = \sum \, X_i = 1$$

$$\mathbf{X}_1 + \mathbf{X}_2 = \mathbf{1}$$

Then
$$X_1 = 1 - X_2$$
 and $X_2 = 1 - X_1$

Example: calculate the mole fraction for each of solute and solvent in a solution if the solute is (2 mole) and the solvent is (3 mole).

Solution:

$$X_1 = \frac{n_1}{n_1 + n_2} = \frac{2}{2 + 3} = \frac{2}{5} = 0.4$$

$$X_2 = \frac{n_2}{n_1 + n_2} = \frac{3}{2 + 3} = \frac{3}{5} = 0.6$$

$$X_1 + X_2 = 0.4 + 0.6 = 1$$

Exercises:

- 1. A sucrose solution $C_{12}H_{22}O_{11}$ (342 g/mol) is prepared by dissolving 34.2 g of it in 180 g of distilled water(18 g/mol). Express the concentration of sucrose and water in the solution in terms of mole fraction for each one.
- 2. Calculate the mole fraction of water in a mixture consists of 9 g of water (18 g / mol) and 120 g of acetic acid $(\text{CH}_3\text{COOH})(60 \text{ g} / \text{mol})$.

9

For 3 components mixture (1, 2 and 3) we have X_1, X_2 , and X_3 Then:

$$\mathbf{X}_1 = \frac{n1}{n1+n2+n3}$$

$$X_2 = \frac{n2}{n1+n2+n3}$$

$$X_3 = \frac{n3}{n1+n2+n3}$$

Example: Calculate the mole fraction for each component in a mixture that contains 1 mole of A, 2 moles of B and 3 moles of C.

Total No. of moles n_T = moles of A (n_A) + moles of B (n_B) + moles of C (n_C)

$$\mathbf{n}_{\mathrm{T}} = \mathbf{n}_{\mathrm{A}} + \mathbf{n}_{\mathrm{B}} + \mathbf{n}_{\mathrm{C}}$$

$$n_T = 1 + 2 + 3 = 6$$
 moles

$$X_A = \frac{n_A}{n_T} = \frac{1}{6} = 0.17$$

$$X_B = \frac{n_B}{n_T} = \frac{2}{6} = 0.33$$

$$X_C = \frac{n_C}{n_T} = \frac{3}{6} = 0.5$$

$$X_T = \sum\, X_i = 1$$

$$\mathbf{X}_{\mathbf{T}} = \mathbf{X}_{\mathbf{A}} + \mathbf{X}_{\mathbf{B}} + \mathbf{X}_{\mathbf{C}}$$

$$X_T = 0.17 + 0.33 + 0.5 = 1$$

Exercise:

The mass of an aqueous solution that contains 10.1 g of KNO₃ (101 g/mol) is

154.1 g . Calculate :

- a. The molality of the solution.
- b. The mole fraction of each of the solute (KNO $_3$) and solvent (H $_2$ O)(18 g/mol).