
Computer Skills & Programming II Dr. Shayma Akram Yousif

1

Lecture 3: Jump statements in C++

Jump statements are used to manipulate the flow of the program if some

conditions are met. It is used to terminate or continue the loop inside a

program or to stop the execution of a function. In C++ there is four jump

statement: break, continue, goto and return.

C++ Break

In C++, the break statement terminates the loop when it is encountered.

Syntax

break;

Computer Skills & Programming II Dr. Shayma Akram Yousif

2

Example: break with for loop

// program to print the value of i

#include <iostream>
using namespace std;

int main() {
 for (int i = 1; i <= 5; i++) {
 // break condition
 if (i == 3) {
 break;
 }
 cout << i << endl;
 }

return 0;
}

Output
1

2

In the above program, the for loop is used to print the value of i in each

iteration.

if (i == 3) {
 break;
}

This means, when i is equal to 3, the break statement terminates the

loop. Hence, the output doesn't include values greater than or equal to 3.

Note: The break statement is usually used with decision-making

statements.

Computer Skills & Programming II Dr. Shayma Akram Yousif

3

Example: break with while loop

// program to find the sum of positive numbers
// if the user enters a negative numbers, break ends the loop

// the negative number entered is not added to sum

// program to find the sum of positive numbers
// if the user enters a negative numbers, break ends the loop

// the negative number entered is not added to sum

#include <iostream>
using namespace std;

int main() {

 int number;
 int sum = 0;

 while (true) {
 // take input from the user

 cout << "Enter a number: ";
 cin >> number;

 // break condition

 if (number < 0) {
 break;

 }

 // add all positive numbers
 sum += number;

 }

 // display the sum

 cout << "The sum is " << sum << endl;

 return 0;
}

Output

Enter a number: 1
Enter a number: 2

Enter a number: 3
Enter a number: -5

The sum is 6.

Computer Skills & Programming II Dr. Shayma Akram Yousif

4

In the above program, the user enters a number. The while loop is used

to print the total sum of numbers entered by the user. Here, notice the

code,

if(number < 0) {
 break;

}

This means, when the user enters a negative number, the break

statement terminates the loop and codes outside the loop are executed.

The while loop continues until the user enters a negative number.

break with Nested loop

When break is used with nested loops, break terminates the inner loop.

For example,

// using break statement inside
// nested for loop

#include <iostream>

using namespace std;

int main() {

 int number;
 int sum = 0;

 // nested for loops

 // first loop

 for (int i = 1; i <= 3; i++) {
 // second loop

 for (int j = 1; j <= 3; j++) {
 if (i == 2) {

 break;
 }

 cout << "i = " << i << ", j = " << j << endl;

 }
 }

 return 0;

}

Output

i = 1, j = 1
i = 1, j = 2

Computer Skills & Programming II Dr. Shayma Akram Yousif

5

i = 1, j = 3
i = 3, j = 1

i = 3, j = 2
i = 3, j = 3

In the above program, the break statement is executed when i == 2. It

terminates the inner loop, and the control flow of the program moves to

the outer loop. Hence, the value of i = 2 is never displayed in the output.

C++ Continue

In computer programming, the continue statement is used to skip the

current iteration of the loop and the control of the program goes to the

next iteration.

Syntax

continue;

Computer Skills & Programming II Dr. Shayma Akram Yousif

6

Example: continue with for loop

In a for loop, continue skips the current iteration and the control flow

jumps to the update expression.

// program to print the value of i

#include <iostream>
using namespace std;

int main() {
 for (int i = 1; i <= 5; i++) {
 // condition to continue
 if (i == 3) {
 continue;
 }

 cout << i << endl;
 }

 return 0;
}

Output

1
2
4
5

In the above program, we have used the the for loop to print the value

of i in each iteration. Here, notice the code,

if (i == 3) {
 continue;
}

This means

▪ When i is equal to 3, the continue statement skips the current

iteration and starts the next iteration

▪ Then, i becomes 4, and the condition is evaluated again.

▪ Hence, 4 and 5 are printed in the next two iterations.

Example: continue with while loop

In a while loop, continue skips the current iteration and control flow of the

program jumps back to the while condition.

Computer Skills & Programming II Dr. Shayma Akram Yousif

7

// program to calculate positive numbers till 50 only
// if the user enters a negative number,
// that number is skipped from the calculation

// negative number -> loop terminate
// numbers above 50 -> skip iteration

#include <iostream>
using namespace std;

int main() {
 int sum = 0;
 int number = 0;

 while (number >= 0) {
 // add all positive numbers
 sum += number;

 // take input from the user
 cout << "Enter a number: ";
 cin >> number;

 // continue condition
 if (number > 50) {
 cout << "The number is greater than 50 and won't be
calculated." << endl;
 number = 0; // the value of number is made 0 again
 continue;
 }
 }

 // display the sum
 cout << "The sum is " << sum << endl;

 return 0;
}

Output

Enter a number: 12
Enter a number: 0
Enter a number: 2
Enter a number: 30
Enter a number: 50
Enter a number: 56
The number is greater than 50 and won't be calculated.
Enter a number: 5
Enter a number: -3
The sum is 99

Computer Skills & Programming II Dr. Shayma Akram Yousif

8

In the above program, the user enters a number. The while loop is used

to print the total sum of positive numbers entered by the user, as long as

the numbers entered are not greater than 50.

Notice the use of the continue statement.

 if (number > 50){
 continue;
}

When the user enters a number greater than 50, the continue statement

skips the current iteration. Then the control flow of the program goes to

the condition of while loop.

▪ When the user enters a number less than 0, the loop terminates.

Note:

The continue statement works in the same way for the do...while loops.

continue statement with Nested loop

When continue is used with nested loops, it skips the current iteration of

the inner loop. For example,

// using continue statement inside
// nested for loop

#include <iostream>
using namespace std;

int main() {
 int number;
 int sum = 0;

 // nested for loops

 // first loop
 for (int i = 1; i <= 3; i++) {
 // second loop
 for (int j = 1; j <= 3; j++) {
 if (j == 2) {
 continue;
 }
 cout << "i = " << i << ", j = " << j << endl;
 }

Computer Skills & Programming II Dr. Shayma Akram Yousif

9

 }

 return 0;
}

Output
i = 1, j = 1
i = 1, j = 3
i = 2, j = 1
i = 2, j = 3
i = 3, j = 1
i = 3, j = 3

In the above program, when the continue statement executes, it skips the

current iteration in the inner loop. And the control of the program moves

to the update expression of the inner loop.

Hence, the value of j = 2 is never displayed in the output.

Note:

The break statement terminates the loop entirely. However,

the continue statement only skips the current iteration.

C++ goto Statement

In C++ programming, goto statement is used for altering the normal

sequence of program execution by transferring control to some other part

of the program.

Syntax of goto Statement

goto label;
...
...
...
label:
statement;
...

In the syntax above, label is an identifier. When goto label; is

encountered, the control of program jumps to label: and executes the

code below it.

https://www.programiz.com/cpp-programming/break-statement

Computer Skills & Programming II Dr. Shayma Akram Yousif

10

Example: goto Statement

// This program calculates the average of numbers entered by the
user.
// If the user enters a negative number, it ignores the number and
// calculates the average number entered before it.

include <iostream>
using namespace std;

int main()
{
 float num, average, sum = 0.0;
 int i, n;

 cout << "Maximum number of inputs: ";
 cin >> n;

 for(i = 1; i <= n; ++i)
 {
 cout << "Enter n" << i << ": ";
 cin >> num;

 if(num < 0.0)
 {
 // Control of the program move to jump:
 goto jump;
 }
 sum += num;
 }

jump:
 average = sum / (i - 1);
 cout << "\nAverage = " << average;
 return 0;

Computer Skills & Programming II Dr. Shayma Akram Yousif

11

}

Output
Maximum number of inputs: 10
Enter n1: 2.3
Enter n2: 5.6
Enter n3: -5.6

Average = 3.95

Note:

You can write any C++ program without the use of goto statement and is

generally considered a good idea not to use it.

Reason to Avoid goto Statement

The goto statement gives the power to jump to any part of a program

but, makes the logic of the program complex and tangled.

In modern programming, the goto statement is considered a harmful

construct and a bad programming practice.

The goto statement can be replaced in most of C++ program with the use

of break and continue statements.

C++ return statement

The return statement returns the flow of the execution to the function from

where it is called. This statement does not mandatorily need any conditional

statements. As soon as the statement is executed, the flow of the program

stops immediately and return the control from where it was called. The

return statement may or may not return anything for a void function, but

for a non-void function, a return value is must be returned.

Syntax:

return[expression];

https://www.programiz.com/cpp-programming/break-statement
https://www.programiz.com/cpp-programming/continue-statement

Computer Skills & Programming II Dr. Shayma Akram Yousif

12

// C++ code to show not using return
// statement in void return type function

#include <iostream>
using namespace std;

// void method
void Print()
{
 cout << "Hello World";
}

// Driver method
int main()
{

 // Calling print
 Print();

 return 0;
}

Output:
Hello World"

Using return statement in void return type function:

Now the question arises, what if there is a return statement inside a void

return type function?

Since we know that, if there is a void return type in the function

definition, then there will be no return statement inside that function. But

if there is a return statement inside it, then also there will be no problem

if the syntax of it will be:

Correct Syntax:

void func()
{
return;
}

Computer Skills & Programming II Dr. Shayma Akram Yousif

13

This syntax is used in function just as a jump statement in order to break

the flow of the function and jump out of it.

// C++ code to show not using return
// statement in void return type function

#include <iostream>
using namespace std;

// void method
void Print()
{
 cout << "Hello World";

 return; // void method using the return statement
}

// Driver method
int main()
{

 // Calling print
 Print();

 return 0;
}

But if the return statement tries to return a value in a void return type

function, that will lead to errors.

Incorrect Syntax:

void func()
{
 return value;
}

Warnings:

warning: 'return' with a value, in function returning void

Computer Skills & Programming II Dr. Shayma Akram Yousif

14

// statement in void return type function

#include <iostream>
using namespace std;

// void method
void Print()
{
 cout << "Hello World";

// void method using the return
// statement to return a value

 return 10;
}

// Driver method
int main()
{

 // Calling print
 Print();

 return 0;
}

Warnings:

prog.c: In function 'Print':

prog.c:12:9: warning: 'return' with a value, in function returning void

 return 10;

 ^

