ALMUSTAQBAL UNIVERSITY COLLEGE

Medical Laboratories Techniques Department

Stage: First year students

Subject: General chemistry – Part A - Lecture 2

Lecturer: Assistant professor Dr. SADIQ . J. BAQIR

Methods of expressing concentrations:

Concentration represents the amount of dissolved substance (solute) per unit amount of solution , It can be expressed by :

1) Chemical units: equivalent mass - Molar mass(mole).

2) Physical units: mass – volume

1. Chemical Units:

The mole:

Is a unit for the amount of a chemical species , always associated with a chemical formula and represents Avogadro's number (6.023×10^{23}) of particles(molecules, atoms or ions) represented by that formula .

Avogadro's number is the number of atoms in 1 mole of an element or number of ions in 1 mole of the ionic form or number of molecules in 1 mole of a molecules

1 mole of an element contains Avogadro's number (6.023 x 10²³) of atoms

1 mole of ions contains Avogadro's number (6.023 x 10²³) of ions.

1 mole of molecules contains Avogadro's number (6.023 x 10²³) of molecules.

Example:

Calculate the number of moles of 3.01×10^{25} water molecules.

Solution:

$$\begin{aligned} & Number \ of \ moles = \frac{number \ of \ molecules}{\textit{Avogadros number}} \\ & Number \ of \ moles \ of \ H_2O = \frac{3.01 \times 10^{25}}{6.023 \times 10^{23}} \ = 50 \ moles \end{aligned}$$

Example:

Calculate the number of molecules in 0.02 mole of CO₂.

Solution:

Number of molecules = number of moles x Avogadro's number Number of molecules = $0.02 \times 6.023 \times 10^{23} = 1.2 \times 10^{22}$ CO₂ molecules

Exercise:

Calculate the number of moles of each of the following.

- a) $3.01 \times 10^{23} \,\mathrm{N}_2$ molecules
- b) 4.82×10^{24} iron atoms

<u>Molar Mass</u>: Is the mass in grams of 1 mole of the substance, it can be calculated by summing the atomic masses of all the atoms appearing in a chemical formula.

Molar mass
$$(M.wt) = \sum atomic molar mass$$

Example :- The molar mass for formaldhyde CH_2O is : (C=12,H=1,O=16) $M. wt_{CH_2O} = \sum (1mole\ carbon + 2mole\ hydrogen + 1mole\ oxygen) atom$ $M. wt_{CH_2O} = 1\ x\ 12\ g + 2\ x\ 1.0\ g + 1\ x\ 16.0\ g$ $= 30.0\ g\ /mole\ of\ CH_2O$

Example :- Molar mass of glucose $C_6H_{12}O_6$:

$$M.wt_{C_6H_{12}O_6} = \sum (6mole\ carbon + 12mole\ hydrogen + 6mole\ oxygen)$$

$$M.wt_{C_6H_{12}O_6} = 6 x12.0 + 12 x 1.0 + 6 x 16.0 = 180 g / mole$$

$$M.wt_{C_6H_{12}O_6} = \sum (6mole\ carbon + 12mole\ hydrogen + 6mole\ oxygen)$$

Example :- Molar mass of Na_2SO_4 . $7H_2O$: (Na = 23, S=32, O=16, H=1)

$$Mwt(Na2SO4.7H2O) = \sum (2mole\ Na + 1mole\ S + 4mole\ O) + 7(2mol\ H + 1mol\ O)$$

M.wt
$$(Na_2SO_4. 7H_2O) = (2\times23) + (1\times32) + (4\times16) + 7(2\times1+1\times16) = 268$$
 g/mol

Important Relations:

The Molar mass (M.wt) is expressed by g/mole or mg/mmole

No. moles(n) =
$$\frac{\text{wt}(g)}{\text{M. wt}(g)}$$

$$Mole = 10^{3} mmole \quad , \quad m \; mole = \frac{1}{1000} \; mole = 10^{-3} mole$$

Exercise:

- a) What is the mass of 0.04 mole of N_2 (28 g/mol)?
- b) What is the number of moles in 5.6 g of PCl₅ (208 g/mol)?
- c) Calculate the molar mass of the gas which has 22.54 g in 0.23 mole.

Example: How many grams of Na^+ (M.wt = 23 g/mol) are contained in

$$(25.0 g) of Na2SO4 (M.wt = 142.0 g/mol)?$$

Solution:

$$Na_2SO_4 \longrightarrow 2Na^+ + SO_4^2$$

1mole 2mole 1mole

No. of moles
$$(n_{Na_2SO_4}) = \frac{\text{Wt}_{(g)}Na_2SO_4}{\text{M.Wt}_{(g)}Na_2SO_4} = \frac{25.0}{142.0} = 0.176 \text{ moles of } Na_2SO_4$$

No. of moles of Na⁺(n_{Na^+})= Number of moles Na_2SO_4 x No. of atoms of Na⁺

No. of moles of Na+ = $\frac{massof\ Na2SO4}{Molar\ mass\ of\ Na2SO4}$ x No. of Na atoms in Na₂SO₄

No. of moles of $Na^+(n_{Na^+}) = 0.176 \times 2 = 0.352 \text{ moles } Na^+$

mass $Na^+(g) = No.$ of moles $Na^+ x$ molar mass of $Na^+(g/mol)$

mass
$$Na^+(g) = 0.352 \times 23 = 8.10 (g) Na^+$$

or

mass of Na⁺ = $\frac{massof\ Na2SO4}{Molar\ mass\ of\ Na2SO4}$ x No. of Na atoms x molar mass of Na

mass of Na⁺ =
$$\frac{25 g}{142 \ glmol}$$
 x 2 Na⁺ atoms x 23g/mol = 8.10 g

Mass of Element(g) = $\frac{mass\ of\ compound\ (g)}{Molar\ mass\ of\ compound\ (\frac{g}{mol})}$ x No. of atoms x molar mass of atom

Examples;

1. No. of moles of Na⁺ (n_{Na}^+) in NaCl is = 1 x No. of moles of NaCl

NaCl
$$\longrightarrow$$
 Na⁺ + Cl⁻

1 mole 1 mole

2. No. of moles of Na⁺ (n_{Na}^+) in Na₃PO₄ is = 3 x No. of moles of Na₃PO₄

$$Na_3PO_4 \longrightarrow 3Na^+ + PO_4^{3-}$$

1 mole 3 mole

Exercise:

- 1. No. of moles of $K^+(n_{k+})$ in $K_2SO_4 = ?$
- 2. No. of moles of $K^+(n_{k+})$ in $KNO_3 = ?$
- 3. No. of moles of $Mg^{2+}(n_{Mg^{2+}})$ in $MgSO_4 = ?$
- 4. No. of moles of Fe³⁺ ($n_{\text{Fe3+}}$) in **FeCl₃ = ?**
- 5. No. of moles of $Cl^{-}(n_{Cl-})$ in **FeCl**₃ = ?

Exercises:

- 1. Find out the mass of Ca (40 g/mol) in 20 g of $Ca_3(PO_4)_2$ (310 g/mol).
- 2. Calculate the mass of Na (23 g/mol) in 25 g of Na₂CO₃.10H₂O. (286 g/mol)
- 3. Calculate the mass of Na (23 g/mol) in 25 g of Na₂CO₃ (106 g/mol)

Molar concentration (M):

Molarity(M): Number of moles of solute per liter of solution

$$Molarity(M) = \frac{number\ of\ moles\ of\ solute}{volume\ of\ solution(liter)}$$

or

Number of millimoles (m moles) of solute per milliter (mL) of solution.

Or
$$Molarity(M) = \frac{number of mmole of solute}{volume of solution(mL)}$$

$$Molarity(M) = \frac{number\ of\ moles\ of\ solute}{volume\ of\ solution(liter)} = \frac{number\ of\ mmole\ of\ solute}{volume\ of\ solution(\ mL)}$$

Example:

What is (C_{NaCl}) the concentration of NaCl(58.5 g/mol) in grams per milliliter (g/mL) for its 0.25 M aqueous solution?

Solution:

$$0.25 \text{ M} = 0.25 \text{ mol/L} \equiv 0.25 \text{ mmol/mL} = 0.25 \text{ x } 10^{-3} \text{ mole / mL}$$

$$C_{NaCl}$$
 in $(g/mL) = 0.25 \times 10^{-3}$ mole / mL x M.wt $(g/mol) = g / mL$

$$C_{\text{NaCl}}$$
 in (g/mL) = 0.25 x 10⁻³ mole / mL × 58.5 g/mol = 0.0146 g/mL

Example:

Calculate(C_{K+}) the concentration of potassium ion (39.1 g/mol) in grams per liter for a 0.3 M aqueous solution of KCl (potassium chloride).

Solution:

$$KCl \rightarrow K^+ + Cl^-$$

$$0.3 \text{ M KCl} = 0.3 \text{ mol/ L KCl} = 0.3 \text{ mol/ L K}^{+}$$

Each mol of
$$K^{+} = 39.1 g = M.wt$$

Then
$$C_{K+}$$
 in g/Liter = 0.3 mol/liter x 39.1 g/mol = 11.7 g/liter

Molarity(M) Calculations:

Molarity (M) =
$$\frac{\text{No.of moles}}{\text{volume(L)}} = \frac{\frac{\text{wt}_{(g)}}{\text{M.wt}}}{V_{L}}$$

Molarity(
$$M$$
) = $\frac{\text{wt}_{(g)}}{\text{M.wt x} \frac{\text{VmL}}{1000}}$

$$Molarity(M) = \frac{wt_{(g)} x 1000}{M.wt x V_{mL}}$$

Example: Calculate the molar concentration of KNO_3 aqueous solution that contains (2.02 g) of KNO_3 (M.wt =101 g/mole) in (2.0 L) of solution.

Solution:

$$Molarity(\ M) = \frac{wt_{(g)}}{\text{M.wt x V}_L} = \frac{2.02_{(\ g\)}}{101\,\text{x 2.0 L}} = \ 0.\ 10\ M$$

or

$$Molarity(M) = \frac{wt_{(g)} \, x \, 1000}{M.wt \, x \, V_{mL}} \quad = \frac{2.02_{(g)} \, x \, 1000}{101 \, x \, 2000 \, mL} = 0. \, 10 \, \, M$$

<u>Analytical Molarity</u>: The number of moles of solute in one liter of solution or number of mmole in one mililiter . e.g. a sulfuric acid(98 g/mol) solution that has an analytical concentration of (1.0M) can be prepared by dissolving (1.0 mole) or (98 g) of H_2SO_4 in water and dilution to exactly (1.0 L).

{Molarity (M) =
$$\frac{1 \, mole}{1 \, L}$$
 = 1M}

Example: Describe the preparation of (2.00 liter) of (0.18 M) aqueous solution of BaCl₂ from solid BaCl₂.2H₂O (244.3 g/mole).

Solution:

$$\begin{array}{ccc} BaCl_2.2H_2O & \rightarrow BaCl_2 & + 2H_2O \\ 1mole & 1mole & 2mole \end{array}$$

Each (1 mole BaCl₂.2H₂O) gives (1 mole BaCl₂).

As
$$Molarity(M) = \frac{No.of\ moles}{volume(L)}$$

No. of moles = molarity $M \times volume(L)$

for 2 liter of 0.18 M BaCl₂ solution we have

No. moles $BaCl_2$ in Solution = 0.18 mole $\frac{BaCl_2}{L}$ x 2.00 L = 0.36 mole (BaCl₂)

Then No. of moles $BaCl_2.2H_2O$ needed = No. of moles $BaCl_2 = 0.36$ moles

Mass(g) = No.of moles x molar mass

The mass of $(BaCl_2.2H_2O) = 0.36$ mole x 244.3 g /mol = 87.95 g $BaCl_2.2H_2O$

The solution is prepared by dissolving 87.95~g of $BaCl_2.2H_2O$ in water and complete the volume to 2.00~L

Example:

Describe the preparation of 500 mL of 0.074 M Cl^- solution from solid BaCl₂ (208 g/mol).

Solution:

$$BaCl_2 \quad \rightarrow \quad \quad Ba^{2+} \ + \ 2 \ Cl^{\text{-}}$$

No. of moles = Molarity (mol / liter) x Volume (Liters)

$$V_L = \frac{V_{mL}}{1000} = \frac{500}{1000} = 0.5 L$$

moles $Cl^{-} = 0.074 \text{ mol } Cl^{-} / L \times 0.5L = 0.037 \text{ moles } Cl^{-}$

No .moles BaCl₂ needed = $\frac{1}{2}$ (No. of moles of Cl⁻)

No .moles BaCl₂ needed = $\frac{0.037}{2}$ = 0.0185 mol

mass $BaCl_2 = moles BaCl_2 \times Mwt (208)$

mass $BaCl_2 = 0.0185 \times 208 = 3.848 g$

Then the required solution is prepared by dissolving 3.848 g of $BaCl_2$ in water and dilute to 0.500 L (500 mL).

Exercises:

- 1. Calculate the molarity of a solution prepared by dissolving 2.3 g of ethanol (C_2H_6O) (46 g/mol) in 3.5L of distilled water.
- 2. What is the mass of chloride [Cl⁻](35.5 g / mol) present in NaCl (58.8 g/mol) solution prepared by dissolving 4.39 g of salt in distilled water to get a solution of 250 mL?
- 3. Describe the preparation of 500 mL of 0.0740 M Cl⁻ aqueous solution from solid CaCl₂.2H₂O (147 g/mol).
- 4. Calculate the weight in grams of solid $CaCl_2$ (111 g/mol) required to prepare 250 mL of 0.04 M aqueous solution of Ca^{2+} .
- 5. Calculate the weight in grams of solid NaCl (58.5 g/mol) required to prepare 250 mL of 0.04 M aqueous solution of Na⁺.
- 6. Describe the preparation of 700 mL of 0.0740 M Cl^- solution from solid BaCl_2 (208 g/mol).