AL-Mustaqbal university college Pharmacy department

Pharmaceutical calculation Ghada Ali PhD candidate Dhelal Fouad Mohammed ghada.ali@mustaqbal-college.edu.iq dhilal.foad@mustaqbal-college.edu.iq

Electrolyte Solutions: Milliequivalents, Millimoles, and Milliosmoles Lec 4

Introduction

Electrolytes vs. Non - electrolytes

Compounds in solution are often referred to as either electrolytes or non – electrolytes

- Substances that do not dissociate are called nonelectrolytes (urea, dextrose) – remain intact
- Those with varying degrees of dissociation are called electrolytes (NaCl)
- Electrolyte ions in blood plasma include cations (Na⁺, K⁺, Ca²⁺, and Mg²⁺) and anions (Cl⁻, HCO₃⁻, HPO₄²⁻, SO_4^{2-})

- Electrolytes in human body fluids play an important role in maintaining acid-base balance in body.
- Electrolytes help regulate metabolism in the body and control volume of water in the body.

Pharmaceutical Application

- Electrolyte preparations are employed to treat fluid and electrolyte imbalances in the body.
- Available as oral solutions, syrups, dry granules to be dissolved in water/juice, capsules, tablets and also intravenous infusions.

Milliequivalents

- A chemical unit used by pharmacists, physicians, manufacturers and clinicians across USA to express electrolyte concentration in solution.
- Internationally, molar concentrations (mmol/L or µmol/L) are employed.
- A mEq measures the chemical activity of an electrolyte in solution
- A mEq represents the total number of ionic charges in solution, and the valence (charge) of the ions.

TABLE 12.1 BLOOD PLASMA ELECTROLYTES IN MILLIEQUIVALENTS PER LITER (mEq/L)

CATIONS	mEq/L	ANIONS	mEq/L
Na+	142	HCO3-	24
K+	5	CI-	105
Ca ⁺⁺	5	HPO4	2
Mg++	2	SO ₄	1
		Org. Ac	6
		Proteinate-	16
	154		154

TABLE 12.2 USUAL REFERENCE RANGE OF BLOOD SERUM VALUES FOR SOME ELECTROLYTES[®]

CATION/ANION	mEq/L	SI UNITS (mmol/L)
Sodium	135-145	135-145
Potassium	3.5-5.5	3.5-5.5
Calcium	4.6-5.5	2.3-2.75
Magnesium	1.5-2.5	0.75-1.25
Chloride	96-106	96-106
Carbon Dioxide	24-30	24-30
Phosphorus	2.5-4.5	0.8-1.5

^a Reference ranges may vary slightly between clinical laboratories based, in part, on the analytical methods and equipment used. The equivalent is formally defiened as the amount of a substancece which will either :

- React with or supply one mole of hydrogen ions in an acid –base reaction, or
- React with or supply one mole of electrons in a redox reaction

Calculations of Milliequivalents

Equivalent = mass of a given compound / Equivalent weight

Equivalent weight = molecular weight / valence

To convert milligrams (mg) to milliequivalents (mEq) mEq = (mg x valence) / molecular weight

To convert mEq/mL to mg/mL mg/mL = (mEq/ml x molecular weight) / valence

CALCULATIONS CAPSULE

Milliequivalents

To convert milligrams (mg) to milliequivalents (mEq):

 $mEq = \frac{mg \times Valence}{Atomic, formular, or molecular weight}$

To convert milliequivalents (mEq) to milligrams (mg):

mg – <u>mEq × Atomic, formula, or molecular weight</u> Valence

To convert milliequivalents per milliliter (mEq/mL) to milligrams per milliliter (mg/mL): $mg/mL = \frac{mEq/mL \times Atomic, \text{ formula, or molecular weight}}{Valence}$

TABLE 12.3 VALUES FOR SOME IMPORTANT IONS

ION	FORMULA	VALENCE	FORMULA WEIGHT	EQUIVALENT WEIGHT ^a
Aluminum	AI+++	3	27	9
Ammonium	NH₫	1	18	18
Calcium	Ca ⁺⁺	2	40	20
Ferric	Fe ⁺⁺⁺	3	56	18.7
Ferrous	Fe ⁺⁺	2	56	28
Lithium	Li*	1	7	7
Magnesium	Mg ⁺⁺	2	24	12
Potassium	K*	1	39	39
Sodium	Na ⁺	1	23	23
Acetate	C ₂ H ₃ O ₂	1	59	59
Bicarbonate	HCO3	1	61	61
Carbonate	CO3 -	2	60	30
Chloride	CI-	1	35.5	35.5
Citrate	C6H5O7	3	189	63
Gluconate	C6H11O7	1	195	195
Lactate	C ₃ H ₅ O ₃	1	89	89
Phosphate	H ₂ PO ₄	1	97	97
	HPO4 -	2	96	48
Sulfate	SO4 -	2	96	48
^a Equivalent wel	ght = <u>Atomic or for</u> Vale	mula weight nce		

Example Calculations of Milliequivalents

 What is the concentration, in milligrams per milliliter, of a solution containing 2 mEq of potassium chloride (KCl) per milliliter?

Molecular weight of KCl = 74.5

mg/mL = (mEq/mL x molecular weight) / valence = 2 x 74.5 = 149 mg/mL, answer. What is the concentration, in grams per milliliter, of a solution containing 4 mEq of calcium chloride (CaCl2·2H2O) per milliliter?

Formula weight of CaCl2·2H2O = 147

mg/mL = (mEq/mL x molecular weight) / valence

= 4 x 147 / 2 = 294 mg/ml = 0.294 g/ml answer

```
What is the percent (w/v) concentration of a solution containing 100 mEq of ammonium chloride per liter?

    Molecular weight of NH4Cl = 53.5
    100 mEq / 1000ml = x mEq /1ml
    x= 0.1 mEq / ml
    mg/mL = (mEq/mL x molecular weight) / valence
    = 0.1 x 53.5 /1
    = 5.35 mg / ml = 0.00535 g/ml
    = 0.535 % answer.
```

A solution contains 10 mg/100 mL of K ions. Express this concentration in terms of milliequivalents per liter?

Atomic weight of K = 39 10 mg / 100 ml = x mg /1ml x= 0.1 mg / ml mg/mL = (mEq/mL x molecular weight) / valence 0.1 = (mEq/ml x 39)/1 mEq / ml = 0.00256 = 2.564 mEq / L A solution contains 10 mg/100 mL of Ca ions. Express this concentration in terms of milliequivalents per liter?

Atomic weight of Ca 40 Equivalent weight of Ca 40/2 = 20mEq/L = (mg / L x valance) / atomic weight = (100 mg / ml x 2) / 40

= 5 mEq/L answer.

 A magnesium (Mg) level in blood plasma is determined to be 2.5 mEq/L Express this concentration in terms of milligrams?

> Atomic weight of Mg 24 Equivalent weight of Mg 24 / 2 = 12

- mg/L = (mEq/L x molecular weight)/valence = (2.5 x 24)/2
 - = 30 mg/L answer.

 How many milliequivalents of potassium chloride are represented in a 15 mL dose of a 10% (w/v) potassium chloride elixir?

Molecular weight of KCl = 74.5 Equivalent weight of KCl = 74.5 10 g / 100 ml = x / 15 mlx = 1.5 g = 1500 mg**mg = (mEq x molecular weight) / valence**

 $mEq = (1500 \times 1) / 74.5 = 20.13 mEq answer.$

 How many milliequivalents of magnesium sulfate are represented in 1 g of anhydrous magnesium sulfate (MgSO4)? Molecular weight of MgSO4 = 120 Equivalent weight of MgSO4 = 60

mg = (mEq x molecular weight) / valence 1000 mg = (mEq x 120) / 2 mEq = 2000 / 120 = 16.67 mEq answer How many milliequivalents of Na would be contained in a <u>30 mL</u> dose of the following solution?

R/Disodium hydrogen phosphate18 gSodium biphosphate48 gPurified waterad100 mL1- For Disodium hydrogen phosphate:Formula Na2HPO4.7H2OMolecular weight = 268andthe equivalent weight =13418/100 = x / 30x = 5.4 g = 5400 mgmEq = (mg x valance) / molecular weight= (5400 x 2) / 268 = 40.29 mEq

2- For Sodium biphosphate : Formula NaH2PO4.H2O Molecular weight = 138 and the equivalent weight =138 48/100 = x / 30 x = 14.4 g = 14400 mg

mEq = (mg x valance) / molecular weight = (14400 x 1) / 138 = 104.35 mEq A person is to receive 2 mEq of sodium chloride per kilogram of body weight. If the person weighs 132 lb., how many milliliters of a 0.9% sterile solution of sodium chloride should be administered?

> Molecular weight of NaCl = 58.5 Equivalent weight of NaCl = 58.5

1 kg = 2.2 lb. Weight of person in kg = 132 lb / 2.2 lb = 60 kg

mg = (mEq x molecular weight) / valence = (2×58.5) / 1 = 117 mg to be received per kg body wight 117 x 60 = 7020 mg = 7.02 g to be recived for this person

0.9 g	100 ml	
7.02 g	x ml	x = 780 ml answer

