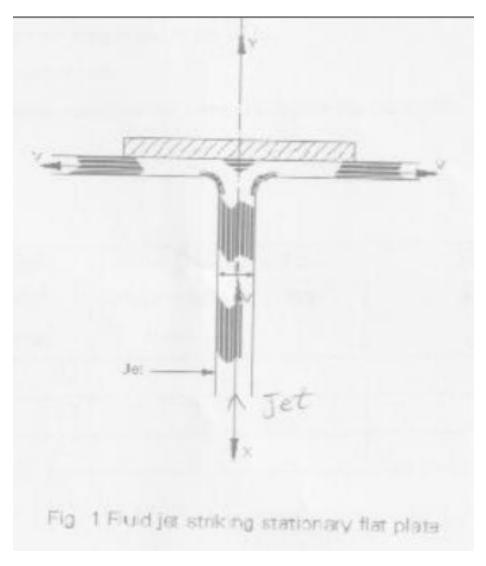
تجربة البثق Impact of Jet

د. عبدالكريم عبدالوهاب


 $(C_I = \frac{F_a}{F_{th}})$ C_I الغرض من التجربة : تعين معامل قوة بثق الماء على صفيحة مستوية -1

 C_I – Jet Coefficient F_a – actual force , F_{th} – theoretical force

2 <u>الأدوات المستخدمة فى التجربة: جهاز</u>، يحتوي على مضخة ماء، وأنابيب، ونوزل، وصفيحة، وخزان ماء، وذراع موازنه، وثقل، وراتوميتر لقياس التصريف.

3 <u>الجانب النظري:</u> التوربينات المائية تستخدم كثيرا في توليد الطاقة الكهربائيه ، وفكرة التوربينات المائيه ، تعتمد على بثق الماء من النوزلات على ريش التورباين ، لتدوير التورباين المربوط مع المولد الكهربائي والذي يولد الطاقة الكهربائيه ، والتوربينات المائيه ، أنواع عديدة ، منها بلتون ويل Pelton . Wheel

فأذا أستخدمنا صفيحة مستويه أفقية ، وسلطنا عليها من الأسفل بثق ماء شاقولي خارج من نوزل ، كما في الشكل (رقم 1).

فالتحليل الرياضي ، كما يلي:

$$\mathbf{F} = \rho_{\mathbf{w}} \mathbf{Q} \left(\mathbf{V}_2 - \mathbf{V}_1 \right) \tag{1}$$

Where,

 $F-Force\ due\ to\ pressure\ of\ jet\ water.\ (N)$

 ρ – Mass density of water. (Kg / \mbox{m}^{3})

Q - Discharge of water. (m^3/s)

 V_2 - final velocity of water at impact of plate. (V_2 = 0) ($\mbox{m/s}$)

 V_1 – Jet velocity of water (from nozzle). (m/s).

Therefore,

$$F = \rho_{w} Q (0 - V_{1})$$

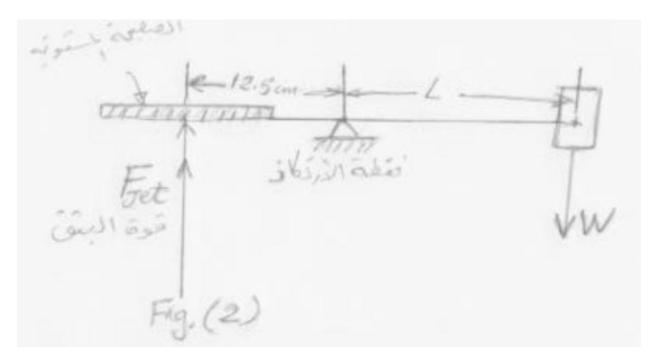
$$- F = -\rho_{w} Q V_{1}$$

$$F_{th} = \rho_{w} Q V_{1}$$

$$But Q = AV_{1}$$

$$Therefore, F_{th} = \rho_{w} A V_{1}^{2}$$
(1)

ومن المعادلة (1) نحسب F_{th} ، حيث نقيس التصريف بجهاز الروتوميتر ، ونحسب السرعة من المعادلة أعلاه (Q=AV) ، حيث أن قطر النوزل معلوم ، نقيس مساحة فوهة النوزل A .


Diameter of nozzle = 10 mm

Area of nozzle (A_n) =
$$\frac{\pi d_n^2}{4} = 0.785 \times 10^{-4} \text{ m}^2$$

12.5 cm المسافة بين نقطة تأثير قوة البثق ونقطة الأرتكاز (شكل رقم 2)

+ <u>طريقة العمل Procedure</u>

1 — بعد تشغيل المضخة وتوجية بثق الماء الشاقولي على الصفيحة المستقيمه الأفقية ، وموازنة الصفيحة بأ ستخدام ذراع الصفيحه ، بتقريب الثقل الموجود أو أبعادة عن مركز العزم ، كما في الشكل (رقم 2) ، حتى تتوازن الصفيحة .

2 — نفتح الصمام لزيادة كمية البثق (التصريف) ، والذي يؤدي الى زيادة سرعة البثق ، والتي تؤدي الى زيادة قوة البثق \mathbf{F} وحسب المعادلة رقم (1) أعلاة ، وهكذا كلما نزيد كمية البثق ، تزداد قوة البثق ، ونأخذ عدة حالات ، ونعمل جدول بالقيم المتغيرة ، ومن معادلة العزم ، معادلة رقم (2)أدناه ، نحسب القوة في كل مرة تتغير بها قيمة القوة .

$$F \times 0.125 = mg \times L \tag{2}$$

3 – كما في كل مرة نفتح الصمام ، وتتغير السرعة والقوة ، نقيس مسافة الثقل عن مركز العزم (نقطة الارتكاز) . (الثقل هو كيلو وربع) .

$$\mathbf{F} \times \mathbf{0.125} = \mathbf{1.25} \times \mathbf{9.81} \times \mathbf{L} \tag{2}$$

لن مقياس الراتوميتر يسجل لنا التصريف ب (لتر / دقيقة) ويجب تحويلها الى -4 (m^3/s) .

5 - 6 وهكذا في كل مرة نفتح الصمام أكثر ، يزداد التصريف ، وهذه الزيادة في التصريف ، تؤدي الى زيادة السرعة ، نظرا لثبوت المساحة ، والزيادة في السرعة تؤدي الى زيادة القوة (حسب المعادلة) ، وفي كل مرة ، يجب أن نجري توازن للصفيحة المستوية ، والتوازن يكون من خلال تحريك الثقل بمسافة أبعد قليلا من مركز الموازنة (أنظر الشكل رقم 2) ، ونسجل المسافة بين الثقل ومركز الموازنة في كل مرة (1).

جدول

No	discharge	discharge	Velocity	L	Force
-	L/min	m^3/s	m/s	m	N
1	10	6.66×10^{-4}	8.48	0.057	5.6
2	15	9.99×10 ⁻⁴	12.72	0.129	12.7
3	20	13.32×10^{-4}	16.97	0.23	22.6
4	25	16.65 ×10 ⁻⁴	21.21	0.36	35.3

6 – مثلما قلنا أعلاه ، في كل مرة نفتح الصمام ، لزيادة التصريف ، والذي بدورة يؤدي الى زيادة السرعة ، وهذه الزيادة في السرعة ، تؤدي الى زيادة القوة ، لذلك نعمل على موازنة الصفيحة ، بواسطة الذراع والذي في نهايته الثقل ، وذلك بتحريك الثقل بعيدا عن نقطة الارتكاز ونقيس المسافة الجديدة بين الثقل ونقطة الارتكاز ونحسب مقدار القوة من معادلة العزم.

7 - قيم القوة التي في الجدول هي القيم الحقيقية ، والقيم التي تم أحتسابها من المعادلة (1) مباشرتا هي القيم النظرية :

$$C_{i} = \frac{F_{a}}{F_{th}}$$

 $C_{i}\,$ - Coefficient of impact

وقيم القوة التي تم أحتسابها بالتجربة ، هي القيم الحقيقية (القيم التي في الجدول) . 2021 / 3 / 31