Al-Mustagbal University College (MUC)

Intelligent Medical Systems Department

Computer Programing I

Lecturer: Maytham N. Meqdad

Lecture 1

ARRAY

An array is a special kind of object used to store a collection of data. An array
differs from the other objects you have seen in two ways:

e All the data stored in an array must be of the same type. For example,
you might use an array to store a list of values of type double that record
rainfall readings in centimeters. Or you might use an array to store a list
of objects of some class called Species that contain the records for various
endangered species.

¢ An array object has only a small number of predefined methods. Because
arrays were used by programmers for many years before classes were
invented, they use a special notation of their own to invoke those few
predefined methods, and most people do not even think of them as

methods.

OBIJECTIVES

After studying this chapter, vou should be able to

Describe the nature and purpose of an array
Ulise arrays in simple Java programs

Define methods that have an array as a parameter
Define methods that return an array

LIse an array as an instance variable in a class
LIse an array that is not filled completely

Order, or sort, the elements in an array

Search an array for a particular item

Define and use multidimensional arrays

Insert text fields and text areas into your applets
Draw arbitrary polygons in your applets

Suppose you want to compute the average temperature for the seven days in a
week. You might use the following code:

Scanner keyboard = new Scanner(System.in);
System.out.printin("Enter 7 temperatures:");
double sum = 0;

for (int count = 0; count < 7; count++)

{

double next = keyboard.nextDouble();

sum

}

sum + next;

double average = sum / 7;

An index is

an integer
expression that
indicates an array
element

Creating and Accessing Arrays

In Java, an array is a special kind of object, but it is often more useful to think of an
array as a collection of variables of the same type. For example, an array consisting
of a collection of seven variables of type double can be created as follows:

double[] temperature = new double[7];

This is like declaring the following seven strangely named variables to have
the type doubTe:

temperature[0], temperature[l], temperature[2], temperature[3],
temperature[4], temperature[5], temperature[6]

Variables like temperature[0] and temperature[1] that have an integer
expression in square brackets are called indexed variables, subscripted
variable, array elements, or simply elements. The integer expression within
the square brackets is called an index or a subscript. Note that the numbering
starts with 0, not 1.

Indices -
0 1 2 3 4 5 6 -
- 32 30 25.7 26 34 31.5 29
i

The array temperature

|
temperature[5]

Since an index can be an expression, we can write a loop to read values into
the array temperature, as follows:

System.out.printin("Enter 7 temperatures:™);
for (int index = 0;index < 7; index++)
temperature[index] = keyboard.nextDouble();

The user could type the seven values on separate lines or all on one line, separated
by spaces. After the array values are read in, we can display them as follows:

System.out.printin("The 7 temperatures are:");
for (int index = 0; index < 7; index++)

System.out.print(temperature[index] + "™ ");
System.out.printin(J);

The program in Listing 7.1 shows an example that uses our sample array
temperature as seven indexed wariables, all of type double. Note that the
program uses for loops similar to the ones we just considered.

/:1"}‘5‘

Reads 7 temperatures from the user and shows which are above
and which are below the average of the 7 temperatures.

*,'r/

import java.util.Scanner;

public class ArrayOfTemperatures
{

public static void main(String[] args)

{

double[] temperature = new double[7];

// Read temperatures and compute their average:
Scanner keyboard = new Scanner(System.in);
System.out.printin("Enter 7 temperatures:'");
double sum = 0;

for (int index = 0; index < 7; index++)

temperature[index] = keyboard.nextDouble();
sum = sum + temperature[index];

}

double average = sum / 7;

System.out.printin("The average temperature is " +
average);

// Display each temperature and 1ts relation to the average:
System.out.printIn("The temperatures are");
for (int index = 0; index < 7; index++)
{
1T (temperature[index] < average)
System.out.printin(temperature[index] +
" below average');
else 1T (temperature[index] > average)

System.out.printin(temperature[index] +
" above average");
else //temperature[index] == average
System.out.printin(temperature[index] +
" the average");

}

System.out.printin("Have a nice week.");

Sample Screen Output

Enter 7 temperatures:
32

30

25.7

26

34

Hilms

29

The average temperature is 29.7428
The temperatures are
32.0 above average
30.0 above average
25.7 below average
26.0 below average
34.0 above average
31.5 above average
29.0 below average
Have a nice week.

Array Details

You create an array in the same way that you would create an object of a class
type using the operation new, but the notation is slightly different. When
creating an array of elements of type Base_Type, the syntax is as follows:

Base_Typel[] Array_Name = new Base Type[lLength];

For example, the following creates an array named pressure that is equivalent
to 100 variables of type int:

int[] pressure = new 1nt[100];
Alternatively, the preceding can be broken down into two steps:

int[] pressure;
pressure = new int[100];

GOTCHA Assigning a Value to the Instance Variable Tength

Your program cannot assign a value to the instance variable Tength, as it is
a final variable. For example, the following attempt to change the size of an
array is invalid:

entry.length = 10; //Illegal! |

In Listing 7.2 we have rewritten the program in Listing 7.1 using
the instance variable Tength. We have also read the size of the array
temperature from the user into the variable size. In this example, we
could use size instead of temperature.length. However, since size is
not final, its value can change and so might not always equal the value of
temperature. length.

’/##

Reads temperatures from the user and shows which are above
and which are below the average of all the temperatures.

*/

import java.util.Scanner;

public class ArrayOfTemperatures?2

{

public static void main(String[] args)

{

Scanner keyboard = new Scanner(System.in);
System.out.println("How many temperatures do you have?");
int size = keyboard.nextInt();

double[] temperature = new double[size];

// Read temperatures and compute their average:
System.out.printin("Enter " + temperature.length +
" temperatures:");
double sum = 0;
for (int index = 0; index < temperature.length; index++)
{
temperature[index] = keyboard.nextDouble();
sum = sum + temperature[index];
}
double average = sum / temperature.length;
System.out.printin("The average temperature is " +
average);

// Display each temperature and its relation to the
// average:
System.out.printin("The temperatures are");

for (int index = 0; index < temperature.length; index++)

{
if (temperature[index] < average)
System.out.printin(temperature[index] +
" below average™);
else if (temperature[index] > average)
System.out.printin(temperature[index] +
" above average");
else //temperature[index] == average
System.out.printin(temperature[index] +
" the average");

}

System.out.printin("Have a nice week.");

Sample Screen Output

How many temperatures do you have?
3

Enter 3 temperatures:

32

26.5

27

The average temperature is 28.5
The temperatures are

32.0 above average

26.5 below average

27.0 below average

Have a nice week.

One common way that array indices go out of bounds is when an array-
processing loop is iterated one too many times. For example, let’s consider a
loop that fills an array. Suppose we want to read a sequence of nonnegative
numbers from the keyboard, using a negative number as a sentinel value at
the end of the data. We might use the following code:

System.out.println("Enter a list of nonnegative integers.");
System.out.printin("Place a negative integer at the end.");
int[] 1ist = new int[10];

Scanner keyboard = new Scanner(System.in);

int number = keyboard.nextInt();

int 1 = 03
while (number >= 0)
{

Tist[i] = number;

T++;

number = keyboard.nextInt();
}

If the user enters more numbers than can fit in the array, this code produces
an array index that is out of bounds.

A better version of the preceding while loop is the following:

while ((1 <Tist.length) && (number >= 0))

{
Tist[i] = number;
T++;
number = keyboard.nextInt();
}
1t (number >= 0)
{

System.out.printIin("Could not read in all the numbers.");
System.out.printIin("Only able to read" + list.length +
" numbers."):

}

This whiTe loop will end if the array becomes full, because we ensure that the
index 1 is less than 1ist.Tength.

- To calculate the average weekly glucose level for a diabetic
patient, we can write the following code in Java by using array:-

import java.util.Scanner;
public class DiabetesPatient {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
double[] glucoselLevels = new double[7];

double sum = 0;

for (inti = 0; i < glucoseLevels.length; i++) {

System.out.print("'Enter glucose level for day " +
(i+1) + "2);

glucoselevels[i] = input.nextDouble();

sum += glucoselevels]i];

double weeklyAverage = sum / glucoseLevels.length;

System.out.printin(**Weekly average glucose level is: '
+ weeklyAverage);

}

- To calculate the average high and low blood pressure
for an unlimited number using the array in the Java
language, we write the following code:

import java.util.Scanner;
public class BloodPressure {
public static void main(String[] args) {

Scanner input = new Scanner(System.in);
System.out.print(*"Enter the number of blood pressure readings: *);
int numReadings = input.nextint();
int[] highPressures = new intfnumReadings];
int[] lowPressures = new int[numReadings];
int highSum = 0;

int lowSum = 0;

for (inti =0; i < numReadings; i++) {

System.out.print(**Enter high pressure reading ** + (i+1) + **: ™);
highPressures[i] = input.nextint();

System.out.print(**Enter low pressure reading ™ + (i+1) + "1 *');
lowPressures[i] = input.nextint();

highSum += highPressures[i];

lowSum += lowPressures][i];

double highAverage = (double) highSum / numReadings;
double lowAverage = (double) lowSum / numReadings;
System.out.printIn(**Average high pressure reading: ** + highAverage);

System.out.printIn(**Average low pressure reading: ' + lowAverage);

-Write program in Java using array to print the names of each
students, calculate the total score for each student, and calculate the
GPA for each student.

import java.util.Scanner;
public class Main {
public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);
1]) iy ¢ 3A50 400N C el andin)
int numOfStudents, totalMarks;

String studentName;

[D&l ae JA) addiiial) (e bl

System.out.print(*'Enter the number of students: *);

numOfStudents = scanner.nextint();

1] D) by ¢ 33 4 ghean £l a8
int[] studentMarks = new intfnumOfStudents];
String[] studentNames = new String[numOfStudents];

double[] studentAverages = new double[numOfStudents];

1] J3all g £ sarall Glaa g ULl Cilily JAY) asdieeal) (e ulbal

for (inti=0; i < numOfStudents; i++) {
System.out.print("Enter the name of student ™" + (i+1) + . ™);
studentName = scanner.next();

studentNames[i] = studentName;

totalMarks = 0;

for (intj = 0; j < 3; j++) { /] ©las ¥ 4l Gl JS o 53l
System.out.print(""Enter the mark for test " + (j+1) + "':);
int mark = scanner.nextint();
totalMarks += mark;

}

studentMarksJi] = totalMarks;

studentAverages|i] = totalMarks / 3.0;

[] edMal) Uiy agk)

for (inti=0; i < numOfStudents; i++) {

System.out.printin(**Student ** + (i+1) + **: ** + studentNames[i]);

System.out.printin(*"Total marks: " + studentMarks[i]);
System.out.printin(**Average: ' + studentAverages[i]);

System.out.printin();

