Al-Mustagbal University College (MUC)

Intelligent Medical Systems Department

Computer Programing I

Lecturer: Maytham N. Meqdad

Lecture 2

MULTIDIMENSIONAL ARRAYS

Example
int[1[] myNumbers ={{1, 2, 3,4}, {5, 6, 7¢{{
System.out.printin(myNumbers[1][2]); // Outputs 7

We can also use a for loop inside another for 1oop to get the
elements of a two-dimensional array (we still have to point to
the two indexes):

Example

public class Main {
public static void main (String[] args) {
int[][] myNumbers = { {1, 2, 3, 4}, {5, 6, 7} };
for (int i = 0; i1 < myNumbers.length; ++1i) {
for(int j = 0; j < myNumbers[i].length; ++3j) {
System.out.println (myNumbers[i][]]):;
}
}
}
}

Output: 1234567

Example of a multidimensional array in Java:
int[][] arr = new int[3][4];
arr[0][0] = 1;

arr[0][1] = 2;

arr[0][2] = 3;

arr[0][3] = 4;

arr[1][0] = 5;

arr[1][1] = 6;

arr[1][2] = 7;

arr[1][3] = 8;

arr[2][0] = 9;

arr[2][1] = 10;

arr[2][2] = 11,
arr[2][3] = 12;
I Print the elements of the array
for (inti=0; i <arr.length; i++) {
for (int j = 0; j <arr[i].length; j++) {
System.out.print(arr[i][j] + " ");
}

System.out.printin();

ks

This creates a 2D array with 3 rows and 4 columns, and initializes each element with
a value. The nested for loops are used to iterate over the elements of the array and
print them out. The output would be:

1234
5678
9101112

Example of a 3D array in Java:

int[][1[] arr = new int[3][4][2];
arr[0][0][0] = 1;
arr[0][0][1] = 2;
arr[0][1][0] = 3;
arr[0][1][1] = 4;
arr[0][2][0] = 5;
arr[0][2][1] = 6;
arr[0][3][0] = 7;
arr[0][3][1] = 8;
arr[1][0][0] = 9;
arr[1][0][1] = 10;
arr[1][1][0] = 11;
arr[1][1][1] = 12;
arr[1][2][0] = 13;
arr[1][2][1] = 14;
arr[1][3][0] = 15;
arr[1][3][1] = 16;

arr[2][0][0] = 17;
arr[2][0][1] = 18t
arr[2][1][0] = 19¢
arr[2][1][1] = 20¢
arr[2][2][0] = 21¢
arr[2][2][1] = 22¢
arr[2][3][0] = 23¢
arr[2][3][1] = 24¢

[IPrint the elements of the array
for (inti=0;i< arr.length; i} (++
for (int j = 0; j < arr[i].length; j} (++
for (int k = 0; k < arr[i][j]l.length; k} (++
System.out.print(arr[i][jI[k¢(" " + [

{
System.out.printin¢()
{
System.out.printin¢()
{

This creates a 3D array with 3 "layers", each with 4 rows and 2
columns, and initializes each element with a value. The nested for
loops are used to iterate over the elements of the array and print them
out. The output would be:

12

34

56

78

910

1112
1314
1516

17 18
1920
2122
2324

Example of a 3D array in Java that stores names:

String[][][] names = {
{{"Maytham", "Ali"}, {"Hassan", "Abbas"}},
{{"Nabeel", "Ahmed"}, {"Sara”, "Fatima"}},
{{'"Meqdad", "Ammar"}, {"Zainab", "Maryam"}}

I3

/I Print the elements of the array
for (inti=0; i < names.length; i++) {
for (intj = 0; j < names]i].length; j++) {
for (int k = 0; k < names]i][j].length; k++) {
System.out.print(names i][j][k] + " ");
}

System.out.printIn();

}
System.out.printIn();

}

This creates a 3D array with 3 "layers", each with 2 rows and 2 columns, and
initializes each element with a name. The nested for loops are used to iterate
over the elements of the array and print them out. The output would be:

Maytham Ali
Hassan Abbas

Nabeel Ahmed
Sara Fatima

Meqdad Ammar
Zainab Maryam

Example :::Here is the code to print a multiplication table of 2 using a
multidimensional array in Java:

public class MultiplicationTable {
public static void main(String[] args) {
int[][] table = new int[10][10];

I/l Populate the array with multiplication table values
for (inti = 0; i < table.length; i++) {
for (int j = O; j < table[i].length; j++) {
table[i][j] = 2 * (i+1) * (j+1);

/I Print the multiplication table
for (inti=0; i < table.length; i++) {
for (int j = 0; j < table[i].length; j++) {
System.out.print(table[i][j] + "\t");
}
System.out.printin();

}

In this code, we have initialized a 10x10 multidimensional array called table.
We then use two nested loops to populate the array with multiplication table
values, where each element of the array is equal to 2 times the product of its
row and column indices. Finally, we use another set of nested loops to print
the multiplication table to the console. The output will be a multiplication table
of 2

4681012141618 20 22
61218243036 42 48 5460
B1824324048566472 80

1024 32 40 50 60 70 80 90 100
123040506072 84096108120
1436 4860728498112126 140
1642567084881121258 144 160
184864 80096112128 144162180
205472050108 126 144162 180 200
226080100120 140 160 180 200 220

An array having more than one index is sometimes useful. For example, suppose
you wanted to store the dollar amounts shown in Figure 7.6 in some sort of
array. The highlighted part of the table contains 60 such entries. If you use an
array that has one index, the length of the array would be 60. Keeping track of
which entry goes with which index number would be difficult. On the other
hand, if you allow yourself two indices, you can use one index for the row of this
table and one index for the column. Such an array is illustrated in Figure 7.7.

Arrays that have exactly two indices can be displayed on paper as a two-
dimensional table and are called two-dimensional arrays. By convention,
we think of the first index as denoting the row of the table and the second
index as denoting the column. Note that, as was true for the simple arrays we
have already seen, we begin numbering indices with 0 rather than 1. The Java
notation for an element of a two-dimensional array is

Array_Name[Row_Index] [Column_Index]

For example, if the array is named table and it has two indices, table[3][2]
is the entry whose row index is 3 and column index is 2. Because indices begin

Savings Account Balances for Various Interest Rates Compounded Annually
(Rounded to Whole Dollar Amounts)

Year 5.00% 5.50% 6.00 % 6.50% 7.00% 7.50 %
1 $1050 $1055 $1060 $1065 $1070 $1075
2 $1103 $1113 $1124 $1134 $1145 $1156
3 $1158 $1174 $1191 $1208 $1225 $1242
4 $1216 $1239 $1262 $1286 $1311 $1335
5 $1276 $1307 $1338 $1370 $1403 $1436
6 $1340 $1379 $1419 $1459 $1501 $1543
7 $1407 $1455 $1504 $1554 $1606 $1659
8 $1477 $1535 $1594 $1655 $1718 $1783
9 $1551 $1619 $1689 $1763 $1838 $1917
10 $1629 $1708 $1791 $1877 $1967 $2061

FIGURE 7.7 Row and Column Indices for an Array
Named table

Row index 3 Column index 2

'
/Indices 0 1 2 3 4 5

0 $1050 $1055 $1060 $1065 $1070 $1075
$1103 $1113 $1124 $1134 $1145 $1156
$1158 $1174 $1191 $1208 $1225 $1242
51216 $1239 @ $1286 $1311 $1335
$1276 $1307 $1338 $1370 $1403 $1436
$1340 $1379 51419 $1459 $1501 $1543
$1407 $1455 $1504 $1554 $1606 $1659
$1477 $1535 $1504 $1655 $1718 $1783
$1551 $1619 $1689 $1763 $1838 $1017
$1629 $1708 $1791 $1877 $1967 $2061

[V TR = = T o T ¥ o O < N N

table[3][2] has
avalue of 1262

at 0, this entry is in the fourth row and third column of table, as Figure 7.7
illustrates. Trying to relate array indices to actual row and column numbers
gets confusing and is likely to be unnecessary.

Arrays having more than one index are generally called multidimensional n-dimensional
arrays. More specifically, an array that has n indices i1s said to be an n- array
dimensional array. Thus, an ordinary one-index array is a one-dimensional
array. Although arrays having more than two dimensions are rare, they can be
useful for some applications.

Multidimensional-Array Basics

Arrays having multiple indices are handled in much the same way as one-

dimensional arrays. To illustrate the details, we will take vou through an

example Java program that displays an array like the one in Figure 7.7. The Declaring and
program is shown in Listing 7.12. The array is called table. The following creating a two-
staternent declares the name table and creates the array: dimensional array

int[J[] table = new int[10][&];

f’ﬂ-ﬂ

A real application would do
Displays a two-dimensional table showing how something more withthe
interest rates affect bank balances. array table. This is just
4 _ ademonstration program.
public class InterestTable
{
public static void main{S5tring[] args)
{
int[1[] table = new int[10][6];
for (int row = 0; row < 10; row+)
for (int column = 0; column < 6; column++)
table[row] [column] =
getBalance(1000.00, row + 1, (5 + 0.5 *
column));
System.out.printin("Balances for Various Interest Rates " +
"Compounded Annually™);
System.out.printin{" (Rounded to Whole Dollar Amounts)");
System.out.printin();
System.out.printin("Years 5.00% 5.50% 6.00% 6.50% " +
"7.00% 7.50%");
for (int row = 0; row < 10; row+)
{
System.out.print({row + 1) + " "};
for (int column = 0; column < 6: column++)
System.out.print("$" + table[row][column] + " ");
System.out.printin();
1
I3

/".1“.5*

Returns the balance in an account after a given number of years
and interest rate with an initial balance of startBalance.
Interest is compounded annually. The balance is rounded

to a whole number.

*/
public static int getBalance(double startBalance, int years,
double rate)

{
double runningBalance = startBalance;
for (int count = 1; count <= years; count++)
runningBalance = runningBalance * (1 + rate / 100);
return (int)(Math.round(runningBalance));
¥

(continued)

Sample Screen Output

Balances for Various Interest Rates Compounded Annually
(Rounded to Whole Dollar Amounts)

Years 5.00% 5.50% 6.00% 6.50% 7.00% 7.50%

1 $1050 $1055 $1060 $1065 $1070 $1075
2 $1103 $1113 $1124 $1134 $1145 $1156
3 $1158 $1174 $1191 $1208 $1225 $1242
4 $1216 $1239 $1262 $1286 $1311 $1335
5 $1276 $1307 $1338 $1370 $1403 $1436
6 $1340 $1379 $1419 $1459 $1501 $1543
7 $1407 $1455 $1504 $1554 $1606 $1659
8 $1477 $1535 $1594 $1655 $1718 $1783
9 $1551 $1619 $1689 $1763 $1838 $1917
10 $1629 $1708 $1791 $1877 $1967 $2061

The last linels out of allgnment
because 10 has two digits. This
I easy to fix, but that would
clutter the discussion of arraye
with extraneous concerns.

RECAP Declaring and Creating a Multidimensional Array

You declare a name for a multidimensional array and then create the
array in basically the same way that you declare and create a one-
dimensional array. You simply use as many square brackets as there
are indices.

SYNTAX

Base Typel]l...[JArray_Name = new Base_Type[length_1]...
[Length_n];

EXAMPLES

char[][] page = new char[100][80];

int[1[] table new int[10][6];

doubTle[][][]threeDPicture = new double[10][20][30];

SomeClass[]1[]entry = new SomeClass[100][80];
SomeClass is a class.

PROGRAMMING EXAMPLE Employee Time Records

In this programming example, a two-dimensional array named hours is used
to store the number of hours worked by each employee of a company for
each of the five days Monday through Friday. The first array index is used to
designate a day of the week, and the second array index is used to designate an
employee. The two-dimensional array is a private instance variable in the class
named TimeBook given in Listing 7.14. The class includes a method main that
demonstrates the class for a small company having only three employees. The
employees are numbered 1, 2, and 3 but are stored at array index positions
0, 1, and 2, since the array indices are numbered starting with 0. Thus, an
adjustment of minus 1 is sometimes needed when specifying an employee’s
array index. We can number days as 0 for Monday, 1 for Tuesday, and so forth
to avoid adjustments between day numbers and day indices.

For example, the hours worked by employee number 3 on Tuesday are
recorded in hours[1][2]. The first index denotes the second workday of the
week—Tuesday—and the second index denotes the third employee.

The class TimeBook shown in Listing 7.14 is not yet complete. It needs
more methods to be a really useful class, but it has enough methods for the
demonstration program in main. You can think of the definition in Listing
7.14 as a first pass at writing the class definition. It even has a stub for the
definition of the method setHours. Recall that a stub is a method whose
definition can be used for testing but is not yet the final definition. At this
stage, however, setHours is complete enough to illustrate the use of the two-

dimensional array hours, which is an instance variable of the class.

In addition to the two-dimensional array hours, the class TimeBook uses two
one-dimensional arrays as instance variables: The array weekHours records the
total hours each employee works in a week. That is, weekHours[0] is the total
number of hours worked by employee 1 in the week, weekHours[1] is the total
number of hours worked by employee 2 in the week, and so forth. The array
dayHours records the total number of hours worked by all the employees on each
day of the week. That is, dayHours [MON] is the total number of hours worked on
Monday by all of the employees combined, dayHours[TUE] is the total number

of hours worked on Tuesday by all of the employees, and so on.

setHours is a
stub

LISTING 7.14 A Timekeeping Program (part | of 44

/’##

Class that records the time worked by each of a
company's employees during one five-day week.
A sample application is in the main method.

*/

public class TimeBook

{

private int numberOfEmployees;
int[]1[] hours;

private
private
private

private
private
private
private
private
private

int[] weekHours;

int[] dayHours;

static
static
static
static
static
static

final
final
final
final
final
final

int
int
int
int
int
int

//hours[1][j] has the hours for
//employee j on day 1.
//weekHours[1] has the week's
//hours worked for employee 7 + 1.
//dayHours[i] has the total hours
//worked by all employees on day 1.
NUMBER_OF_WORKDAYS = 5;

MON = 0;
TUE = 1
WED = 2;
THU = 3
FRI = 4

!/ﬁ'ﬂ'

Reads hours worked for each employee on each day of the
work week into the two-dimensional array hours. (The method
for input is just a stub in this preliminary version.)
Computes the total weekly hours for each employee and

the total daily hours for all employees combined.

*/

public static void main(String[] args)

{
private static final int NUMBER_OF_EMPLOYEES = 3;

TimeBook book = new TimeBook (NUMBER_OF EMPLOYEES);
book.setHours();

book.update(); A class generally has more
book.showTable(): methods. We have defined only
} ' ' the methods used inmain.

public TimeBook(int theNumberOfEmployees)

{
numberOfEmployees = theNumberOfEmployees;
hours = new 1nt[NUMBER_OF_WORKDAYS] [numberOfEmployees];
weekHours = new int[numberOfEmployees];
dayHours = new int[NUMBER_OF_WORKDAYS] ;
} The final program would

public void setHours() //This is a stub. obtain the employee data

{ from the user.
hours[0][0] = 8; hours[0][1] = 0; hours[0][2] = 9;
hours[1][0] = 8; hours[1][1] = 0; hours[1]1[2] = 9;
hours[2][0] = 8; hours[2][1] = 8; hours[2][2] = 8;
hours[3][0] = 8; hours[3][1] = 8; hours[3][2] = 4;
hours[4][0] = 8; hours[4][1] = 8; hours[4][2] = §;

}

public void update()

{
computeWeekHours();
computeDayHours();

}

private void computeWeekHours()

{
for (employeeNumber = 1; employeeNumber <=

numberOfEmployees; employeeNumber++)
(continued)

{//Process one employee:
int sum = 0;
for (int day = MON; day <= FRI; day++)
sum = sum + hours[day][employeeNumber - 1];
//sum contains the sum of all the hours worked in
//one
//week by the employee with number employeeNumber.
weekHours[employeeNumber - 1] = sum;

1

}

private void computeDayHours()

{

for (int day = MON; day <= FRI; day++)
{//Process one day (for all employees):
int sum = 0;
for (int employeeNumber = 1;
employeeNumber <= numberOfEmployees;
employeeNumber++)
sum = sum + hours[day] [employeeNumber - 1];
//sum contains the sum of all hours worked by all
//employees on one day.
dayHours[day] = sum;
}

} The matrhad chmaTabk1lA ~am and
public void showTable() should be made more robust
{ Frogramming Froject &.

// heading

System.out.print("Employee ");
for (int employeeNumber = 1;
employeeNumber <= numberOfEmployees;
employeeNumber++)
System.out.print(employeeNumber + " ");
System.out.printin("Totals");
System.out.printin();

// row entries

for (int day = MON; day <= FRI; day++)

{
System.out.print(getDayName(day) + " ");
for (int column = 0; column < hours[day].length;

column++)
System.out.print(Chours[day][column] + " ™);

System.out.printin(dayHours[day]);

System.out.printing J;

System.out.print{"Total = ™);

for Cint column = 0; column < numberOfEmployees; columnss)
System.out.print{wegekHours[column] + ™ 7);

System.out.printing ¥;

1

AAConverts 0 to "Monday™, 1 to "Tuesday™, etc.
A/7Blanks are inserted to make all strings the same Tength.
private String getDayMame(int day)
i
String dayMame = null;
switch (day)
i
case MON:
dayName = "Monday ";
break;
case TUE:
dayName = "Tuesday ";
break;
case WED:
dayName = "Wednesday”;
break;
case THU:
dayName = "Thursday ";
break;
case FRI:
dayMame = "Friday ";
break;
default:
System.out.printin{"Fatal Error.™);
System.exit(0);
break;
}

return dayName;

Sample Screen Output

Employee 1 2 31 Torals
Monday g8 0 9 17
Tuesday 8 0 9 17
Wednesday & B8 8§ 24
Thursday & & 4 20
Friday 8 8 & 24
Total = 40 24 138

FIGURE 7.8 Arrays for the Class TimeBook

Column index 0,
wred for emplovee number 1

Indices] 1 . e total -
Row index 2 total howrs worked on
used for “@dne;du'_l: 0 ___E 0 ,-‘/E_\H Tuesday {row index 1) by
(the thind day) 1 |<_8 0] jr S ﬂ'.l'.l';m,nl-n'lm.'eﬁ JETI::Ii? Y
—— T ' ayHours[1] is
T C:_E > 8 g | serto 17 .

1 | s 8 |\ 4 |

4 | |8 AN Y
hours [2] [0] has a vr:.l'e.rerqr'E . The total hours worked by emplovee 3

indicating thal on Wednesday
emplovee 1 worked 8 hours,

{column index 2) iz 38, 50
weekHours[2] is set fo 38,

