LEC 1: Urinalysis

Dr. Shaimaa Munther

What is a Urinalysis?

- <u>Urinalysis</u>: A test that determines the content of the urine.
 - Because urine removes toxins and excess liquids from the body, its contents can provide vital health information.
 - Urinalysis can be used to detect some types of disease, particularly in the case of metabolic disorders and kidney disease.
 - Urinalysis can also be used to uncover evidence of drug abuse.

Urinalysis Basics

- Urinalysis consists of the following components:
 - Macroscopic Examination (physical examination)
 - Chemical Analysis
 - Microscopic Examination

Urine Examination

- 1- Physical Examination
- 2- Chemical Examination
- 3- Microscopic Examination

Macroscopic Examination

- Looking at the physical properties of the urine:
 - Color:
 - Normal urine should be a shade of yellow ranging from a straw to amber color.
 - Abnormal urine can be: colorless, dark yellow, orange, pink, red, green, brown, or black.
 - Clarity (transparency):
 - Normal urine should be clear
 - Abnormal urine can be: hazy, cloudy, or turbid

Appearance

Cloudy (due to pus cells, leukocytes and epithelial cells)

Cloudy

Due to excessive Phosphates

Cloudy

Due to excessive Urates

Milky

Observed in

UTI

Lesions of Kidney, Urethra, Prostate Gland and Renal Pelvis

Rickets

Gouty Arthritis, Leukemia

Fat Globules

Turbidity

Physiological causes:

- 1. Mucus
- 2. Squamous epithelial cells
- 3. Presence of spermatozoa
- 4. Crystaluria
- 5. Contrast media
- 6. Fecal contamination

- 1. White blood cells
- 2. Red blood cells
- 3. Presence of bacteria
- 4. Presence of yeast
- 5. Abnormal crystals
- 6. Lymph fluids and lipids

Chemical Analysis

- The chemical properties of urine, including pH, specific gravity, protein content, glucose content, ketone content, are tested.
- Urine test strips are often used to detect the chemical properties of urine.

TESTS AND RE	ADING TIME						$\overline{}$
2 minutes	HEGATIVE			TRACE	SMALL	MOGENATE	Downloa
NITRITE 60 seconds	HEGATIVE				•	POSITIVE — (any degree of uniterm pink color)	
UROBILINOGEN 60 seconds	0.2	MAL 1	mg/dL URINE	(1 mg = appro	x. 1 EU)	•	•
PROTEIN 60 seconds	NEGATIVE	TRACE	mg/dL	30	100	300	2090 ar more
pH 60 seconds	5.0	5.0	6.5	7.0	7.6	6.0	4.5
BLOOD 60 seconds	HEGATIVE	TRACE	MOLYZED	HEMOLYZED THACE	SMALL	MODERATE ++	LANGE
SPECIFIC GRAVITY 45 seconds	1,000	1.005	1.010	1.015	1.020	1.025	1.030
KETONE 40 seconds	HEGATIVE	mg/dL	TRACE	SMALL	MODERATE 40	# 80 LA	NGE 150
BILIBUBIN 30 seconds	HEGATIVE				SMALL	моренате	LARGE
GLUCOSE 30 seconds	HEGATIVE	g/dL (%) mg/dL	1/10 (tr.) 100	263	1/2	1000	2 or more 2000 or more

Parts of Chemical Analysis

- pH
 - Test measures if urine is acidic, basic or neutral
 - Normal urine ranges from 4.6 to 8.0
- Specific Gravity:
 - Test measures the concentration of particles in the urine and evaluates the body's water balance.
 - The more concentrated the urine, the higher the urine specific gravity.
 - The most common increase in urine specific gravity is the result of dehydration.
 - Normal urine ranges between 1.002 to 1.028

Parts of Chemical Analysis

Ketones:

- Test measures the presence or absence of ketones, the endpoint of rapid or excessive fat breakdown, in the urine.
- Normal urine does not contain ketones

Protein:

- Normally, you have very little protein in your urine. A large amount
 of protein in urine (proteinuria) may mean that you have a
 problem with your kidneys.
- Normal urine levels of proteins (called albumin) are very small
- For a random urine sample, normal values are 0 to 14 mg/dL.
- For a 24-hour urine collection, the normal value is less than 80 mg per 24 hours.

Parts of Chemical Analysis

• Glucose:

- The glucose urine test measures the amount of sugar (glucose) in a urine sample.
- The presence of glucose in the urine is called glycosuria or glucosuria.

Normal Results

Glucose is not usually found in urine.

Normal glucose range in urine: 0 to 0.8 mmol/l (0 to 15 mg/dL)

Abnormal Results Mean

Higher than normal levels of glucose may occur with:

- Diabetes
- Pregnancy
- *Renal glycosuria (A rare condition in which glucose is released from the kidneys into the urine, even when blood glucose levels are normal)

PH	Specific Gravity	Protein	Glucose
partial assessment of acid base status; alkaline pH indicates old sample or urinary tract infection	state of kidney and hydration status of patient	primarily detects protein called albumin; important indicator in the detection of renal disease	primarily detects glucose (sugar); important indicator of diabetes mellitus

Blood

Ketone

Bilirubin urobilinogen

red blood cells, hemoglobin, or myoglobin (muscle hemoglobin); sensitive early indicator of renal disease

normal product of fat metabolism: increased amounts seen in diabetes or starvation (extreme dieting)

detects bilirubin (a product of red cell breakdown); indicator of liver function

another by-product of red cell breakdown; increased amounts seen in fever, dehydration, hemolytic anemia and liver disease

Nitrite

Leukocyte

Ascorbic Acid

certain bacteria convert normal urine nitrate to nitrite; indicator of urinary tract infection

detects esterase enzyme present in certain white blood cells (e.g, neutrophils, monocytes); indicator of urinary tract infection

Ascorbic acid (vitamin C) is known to interfere with the oxidation reaction of the blood and glucose pad on common urine test strips.

Microscopic Examination

- A variety of normal and abnormal cellular elements may be seen in urine when looked at under a microscope, including:
 - Red blood cells
 - White blood cells
 - Epithelial cells
 - Crystals
 - Bacteria

Microscopic Examination

- Red blood cells are not found in normal urine.
- White blood cells and bacteria, signs of infections, are not found in normal urine.
- Epithelial cells are found in urine as they are the cells that line the urinary tract
- Common crystals seen even in healthy patients include calcium oxalate, triple phosphate crystals and amorphous phosphates.
 - A large number of crystals, or certain types of crystals, may mean kidney stones are present or there is a problem with how the body is using food

URINE ANALYSIS Microscopic Examination

Bacteria

Bacteria in Urine

Yeast

URINE ANALYSIS Microscopic Examination

Crystals	Characteristics of Formation	Appearance	Diagnostic Utility
Uric Acid	Formation promoted by acidic urine	000	Seen in tumor lysis syndrome
Calcium phosphate	Formation promoted by alkaline urine	*4	Not suggestive of any specific systemic disease
Magnesium ammonium phosphate (a.k.a. struvite or "triple phosphate")	Formation promoted by alkaline urine		Seen in UTIs by urease- producing organisms (e.g. Proteus, Klebsiella)
Calcium oxalate dihydrate	Formation is largely independent of urine pH	Q Ø	Not suggestive of any specific systemic disease
Calcium oxalate monohydrate	Formation is largely independent of urine pH		Seen in ethylene glycol ingestion
Cystine	Formation promoted by acidic urine	00	Diagnostic of cystinuria

Urine Sediment

Copyright @2006 by The McGraw-Hill Companies, Inc. All rights reserved.

Types of urine sample

Sample type	Sampling	Purpose Routine screening, chemical & FEME	
Random specimen	No specific time most common, taken anytime of day		
Morning sample	First urine in the morning, most concentrated	Pregnancy test, microscopic test	
Clean catch midstream	Discard first few ml, collect the rest	Culture	
24 hours	All the urine passed during the day and night and next day Ist sample is collected.	used for quantitative and qualitative analysis of substances	
Postprandial	2 hours after meal	Determine glucose in diabetic monitoring	
Supra-pubic aspired	Needle aspiration	Obtaining sterile urine	

Thank You