Al-Mustagbal University
College of Healthcare and Medical Techniques
Intelligent Medical System Department

| 8 Y I & la
AL MUSTAQBAL UNIVERSITY

Acwally aubldl Olusidl auds
- s I 'I - I -yl 9"
Qs

Subject: Data Structure
Class: Second

Lecturer: Asst. Prof. Mehdi Ebady Manaa

Lecture: (4)
Stacks 11

= . -
rdh Al-Mustaqgbal University
I) College of Healthcare and Medical Techniques
/ Intelligent Medical System Department
N\

Application of the stack:
1. Simple Balanced Parentheses.

2. Converting Decimal Numbers to Binary Numbers.
3. Infix, Prefix and Postfix Expressions.

1- Simple Balanced Parentheses:

Using a Stack to Process Algebraic Expressions
*Use of parentheses - must be balanced
[1Positive Examples:
‘A{bc(d+e)2-f]+1{

{rO1}e

[1Negative Examples:
{5+(4[3+2)*1]}°

{C13e

*Use stacks to evaluate parentheses usage
[1Scan expression

[JPush symbols

[1Pop symbols

* Test the code with

DL 13
BNON
0{I0O]

Figure 5-3 The contents of a stack during the scan of an expression that contains the
balanced delimiters { [()] }

'l' l 1 Delimiters popped from stack
d 1!
[
{

} Delimiters in expression

[[

{ {

{ {

After After After After After After
push("{") push('[") push("(") popQ) pop) pop

,éégsé)

Al-Mustagbal University
College of Healthcare and Medical Techniques
Intelligent Medical System Department

class OurStack:
def init (self):
self. items[] =
def is empty(self):
return len(self.items) == 0
def push(self, item):
self. items. append (item)
def pop(self):
if not self.is_empty:()
return self. items. pop()
return None
def peek (self):
if not self.is_empty:()
return self. items[1-]
return None
def size(self):
return len(self.items)
def check balance (expression):
open_delimiter_stack = OurStack()
is balanced = True
index = 0
while is balanced and index < len(expression):
next character = expressionlindex]
if next_character in:']})'
open_delimiter stack.push(next character)
elif next_character in:'[{('
if open_delimiter_stack.is_empty:()
is balanced = False
else:

open_delimiter = open_delimiter stack. pop()

is balanced = is paired(open delimiter, next character)
index += 1

if not open_delimiter stack. is_empty:()
is balanced = False
return is balanced
def is paired(open delimiter, close delimiter):
return (open delimiter == (and close delimiter == ")) or\
(open delimiter == [’ and close delimiter == "]’) or\
open_delimiter ==’ {* and close delimiter == ('

Al-Mustagbal University
College of Healthcare and Medical Techniques
Intelligent Medical System Department

#Test cases

test_cases["{(DI}","TO1}","T01" " {[01}"] =

for expression in test cases:

result = check balance (expression)
print (f”Expression ’ {expression}’ is { balanced’ if result else 'not
balanced’ }.”)
Figure 5-4 The contents of a stack during the scan of an expression that contains the
unbalanced delimiters {[(]) }

Delimiters are not a pair
\] Delimiters in expression

l (Delimiter popped from stack

(
[[[
{ { { {

After After After After
push('{') push(C'[") push('C') pop()

Figure 5-5 The contents of a stack during the scan of an expression that contains the
unbalanced delimiters[()]}

A pair of parentheses

\ A pair of brackets
N g

) } Delimiters in expression

([Delimiters popped from stack

[[| [I | | | | Stack is empty when
} is encountered

After After 7Afte|j 7Afler
pushC'[') pushC'C') popO pop

C

Al-Mustagbal University
College of Healthcare and Medical Techniques
Intelligent Medical System Department

Figure 5-6 The contents of a stack during the scan of an expression that
contains the unbalanced delimiters {[()]

A pair of parentheses

\ A pair of brackets

[Delimiters popped from stack

‘rr||

Delimiters in expression

{ { {

After After After rAfter After
pushC'{"') pushC'[") pushC'C") popQO) pop O

Brace is left over in stack

233 /2=116 rem=1

A
116 /2=58 rem=20

58 /2=29 rem=0
20/2=14 rem=1

push remainders
sJapuiewa. dod

A
14/2=7 rem=20

A
7/2=3 rem=1
3/2=1 rem=1
A
1/2=0 rem=1

class Stack:
def init (self):
self.items = []
def is empty(self):
return len(self.items) ==
def push(self, item):
self. items. append (item)
def pop (self):

|[Page 5

== - -
r g Al-Mustagbal University
‘ ,) College of Healthcare and Medical Techniques
'/ Intelligent Medical System Department
N

if not self.is empty():
return self. items. pop ()
return None
def divide by 2(dec number) :
rem stack = Stack()
while dec number > 0:
rem = dec number % 2
rem stack. push (rem)
dec number = dec number // 2
bin string = 77
while not rem stack.is empty():
bin string += str(rem stack.pop())
return bin string
base converter (dec number, base):
digits = “0123456789ABCDEF”
rem stack = Stack()
while dec number > 0:
rem = dec_number % base
rem stack. push (rem)
dec number = dec number // base
new string = 77
while not rem stack.is empty():
new string += digits[rem stack. pop()]
return new string
Example usage:
decimal number = 42
binary representation = divide by 2(decimal number)
print (f”Binary representation of {decimal number} :

{binary representation}”)

decimal number = 255

base = 16

hex representation = base converter(decimal number, base)
print (f”Hexadecimal representation of {decimal number} :
{hex representation}”)

Al-Mustagbal University
College of Healthcare and Medical Techniques
Intelligent Medical System Department

The Infix, Prefix, Postfix Notation:
Arithmetic expression: An expression is defined as a number of operands or data items
combined using several operators. There are basically three types of notations for an
expression;
1) Infix notation
2) Prefix notation
3) Postfix notation

Infix notation: It is most common notation in which, the operator is written or placed in-
between the two operands. The expression to add two numbers A and B is written in infix
notation as, A+ B In this example, the operator is placed in-between the operands A and
B.

Prefix Notation: It is also called Polish notation, refers to the notation in which the
operator is placed before the operand as, +AB As the operator ‘+’ is placed before the
operands A and B, this notation is called prefix (pre means before).

Postfix Notation: In the postfix notation the operators are written after the operands, so it
is called the postfix notation (post means after), it is also known as suffix notation or
reverse polish notation. The above postfix if written in postfix notation looks like follows;
AB+

Algorithm for Converting Infix into Postfix Expression
The following algorithm converts the infix expression into postfix expression. Java
Example

| Al-Mustagbal University
College of Healthcare and Medical Techniques
\ ‘ Intelligent Medical System Department

Algorithm [Converting Infix to Postfix Expression |
stack = new empty stack;
while (not end of string) {
symbol = getNextCharacter();
if (symbol is an operand) {
concatenate (postfix, symbol);

}
{

while(!isempty(stack) && precedence (peek(stack),symbol)) {
top_symbol = pop(stack);
concatenate (postfix, top_symbol);
}
Push (stack, symbol);
}
}
while (!isempty(stack)) {
top_symbol = pop(stack);
concatenate(postfix, top_symbol);

Example: Suppose we want to convert 2*3/(2-1)+5*(4-1) into postfix expression.

stack Postfix

=1 * ||+ ||

Hes

nnpin)unjin|un
s

[
=

e

N) R IR S S BT B S S N TR N Vi

RS0 ol Nee R Nunl Runl Nund Nuul Rinl Renl Nl N d Eoel Eunl Nl BiST BiW] BeS R NS

(ad | Cad | Lad | Cad | Cad | Cad | Cad | Lad | Lad | Lad | Lad | Lad | Ll 0 | Cad | Lad

S0 Ieo R Neu R Nunl Run] Nunl Nuwl NLul Renl Nl NS d Nl Nuw]

Algorithm for Evaluating Postfix Expression

|[Page 8

‘ Al-Mustagbal University
College of Healthcare and Medical Techniques
@ f Intelligent Medical System Department
Y
The following algorithm evaluates the postfix expression. Java Example
Algorithm [Evaluating a Postfix Expression]|
stack = new empty stack;
/* scan the input string reading one element at a time into symbol */
while (not end of string) {
symbol = getNextCharacter();
If (symbol is an operand) {
push (stack, symbol)
lelse{ // symbol is an operator
operand2 = pop(stack);
operandl pop(stack) ;
value = calculate (operandl, symbol, operand2);
push (stack, value);

}

return (pop(stack));
Example : Let us now consider an example. Suppose that we are asked to evaluate the
following postfix expression 6 2 +59 * +,

symbol operand? operandl value stack

-

p
a
2
+
5
9

OOl co | oo | Sy | Sy

—

=3

L oo

+
Lo |™

class Stack:
def __init__(self):
self.items][] =
def is_empty(self):
return len(self.items) ==
def push(self, item):
self.items.append(item)
def pop(self):
if not self.is_empty:()
return self.items.pop()

return None
class BalanceChecker:

@ staticmethod
def check_balance(expression):

|[Page 9

Al-Mustagbal University
College of Healthcare and Medical Techniques
Intelligent Medical System Department

open_delimiter_stack = Stack()

is_balanced = True
index=0
while is_balanced and index < len(expression):

next_character = expression[index]
if next_character in:'l})'
open_delimiter_stack.push(next_character)
elif next_character in:'[{('
if open_delimiter_stack.is_empty:()
is_balanced = False
else:
open_delimiter = open_delimiter_stack.pop()
is_balanced = BalanceChecker.is_paired(open_delimiter, next_character)
index +=1
if not open_delimiter_stack.is_empty:()
is_balanced = False
return is_balanced
@ staticmethod
def is_paired(open_delimiter, close_delimiter):
return (open_delimiter == '(* and close_delimiter ==")") or\
(open_delimiter =="[' and close_delimiter =="T") or\
open_delimiter =="{' and close_delimiter == "}('

def divide_by 2(dec_number):
rem_stack = Stack()
while dec_number > 0:
rem = dec_number % 2
rem_stack.push(rem)
dec_number = dec_number // 2
bin_string" =
while not rem_stack.is_empty:()
bin_string += str(rem_stack.pop())
return bin_string
def base_converter(dec_number, base):
digits = "0123456789ABCDEF"
rem_stack = Stack()
while dec_number > 0:

rem = dec_number % base
rem_stack.push(rem)
dec_number = dec_number // base
new_string"" -
while not rem_stack.is_empty:()
new_string += digits[rem_stack.pop()]
return new_string
#Example usage of BalanceChecker

expressions['{(D1}".,"[01}" ,"[01" ,"{[01}] =

|[Page 10

Al-Mustagbal University
College of Healthcare and Medical Techniques
Intelligent Medical System Department

for expression in expressions:

result = BalanceChecker.check_balance(expression)
print(f"Expression '{expression}' is {'balanced' if result else 'not balanced'}.")

|[Page 11

