
Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

 كلية التقنيات الطبية والصحية
ة ـيـبـطــــة الــــمــــظـــم الانــــــــــســق

 ةـــيــــــذكـــال

Subject: Data Structure

Class: Second

Lecturer: Asst. Prof. Mehdi Ebady Manaa

Lecture: (4)

Stacks II

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

| P a g e 2

:Application of the stack

1. Simple Balanced Parentheses.

2. Converting Decimal Numbers to Binary Numbers.

3. Infix, Prefix and Postfix Expressions.

1- Simple Balanced Parentheses:

Using a Stack to Process Algebraic Expressions

•Use of parentheses - must be balanced

Positive Examples:

•A { b [c (d + e)/2 –f] + 1 }

}]) ([{ •

Negative Examples:

[{•1 (*2 +3]4 +)5 }

})] ([{•

•Use stacks to evaluate parentheses usage

Scan expression

Push symbols

Pop symbols

 • Test the code with

})] ([{

]) ([

{ [()]

Figure 5-3 The contents of a stack during the scan of an expression that contains the

balanced delimiters { [()] }

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

| P a g e 3

class OurStack:

 def __init__(self):

 self.items][=

 def is_empty(self):

 return len(self.items) == 0

 def push(self, item):

 self.items.append(item)

 def pop(self):

 if not self.is_empty:)(

 return self.items.pop)(

 return None

 def peek(self):

 if not self.is_empty:)(

 return self.items [-1]

 return None

 def size(self):

 return len(self.items)

def check_balance(expression):

 open_delimiter_stack = OurStack)(

 is_balanced = True

 index = 0

 while is_balanced and index < len(expression):

 next_character = expression[index]

 if next_character in :'[{('

 open_delimiter_stack.push(next_character)

 elif next_character in :']})'

 if open_delimiter_stack.is_empty:)(

 is_balanced = False

 else:

 open_delimiter = open_delimiter_stack.pop)(

 is_balanced = is_paired(open_delimiter, next_character)

 index += 1

 if not open_delimiter_stack.is_empty:)(

 is_balanced = False

 return is_balanced

def is_paired(open_delimiter, close_delimiter):

 return (open_delimiter == '(' and close_delimiter == ')') or \

 (open_delimiter == '[' and close_delimiter == ']') or \

 (open_delimiter == '{' and close_delimiter == '})'

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

| P a g e 4

 #Test cases

test_cases]"})]([{" ,"])([{" ,"])([" ,"}])([{"[=

for expression in test_cases:

 result = check_balance(expression)

 print(f"Expression '{expression}' is {'balanced' if result else 'not

balanced'}.")
Figure 5-4 The contents of a stack during the scan of an expression that contains the

unbalanced delimiters { [(]) }

Figure 5-5 The contents of a stack during the scan of an expression that contains the

unbalanced delimiters [()] }

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

| P a g e 5

Figure 5-6 The contents of a stack during the scan of an expression that

contains the unbalanced delimiters { [()]

class Stack:

 def __init__(self):

 self.items = []

 def is_empty(self):

 return len(self.items) == 0

 def push(self, item):

 self.items.append(item)

 def pop(self):

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

| P a g e 6

 if not self.is_empty():

 return self.items.pop()

 return None

def divide_by_2(dec_number):

 rem_stack = Stack()

 while dec_number > 0:

 rem = dec_number % 2

 rem_stack.push(rem)

 dec_number = dec_number // 2

 bin_string = ""

 while not rem_stack.is_empty():

 bin_string += str(rem_stack.pop())

 return bin_string

def base_converter(dec_number, base):

 digits = "0123456789ABCDEF"

 rem_stack = Stack()

 while dec_number > 0:

 rem = dec_number % base

 rem_stack.push(rem)

 dec_number = dec_number // base

 new_string = ""

 while not rem_stack.is_empty():

 new_string += digits[rem_stack.pop()]

 return new_string

Example usage:

decimal_number = 42

binary_representation = divide_by_2(decimal_number)

print(f"Binary representation of {decimal_number}:

{binary_representation}")

decimal_number = 255

base = 16

hex_representation = base_converter(decimal_number, base)

print(f"Hexadecimal representation of {decimal_number}:

{hex_representation}")

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

| P a g e 7

The Infix, Prefix, Postfix Notation:

Arithmetic expression: An expression is defined as a number of operands or data items

combined using several operators. There are basically three types of notations for an

expression;

 1) Infix notation

2) Prefix notation

3) Postfix notation

Infix notation: It is most common notation in which, the operator is written or placed in-

between the two operands. The expression to add two numbers A and B is written in infix

notation as, A+ B In this example, the operator is placed in-between the operands A and

B.

Prefix Notation: It is also called Polish notation, refers to the notation in which the

operator is placed before the operand as, +AB As the operator ‘+’ is placed before the

operands A and B, this notation is called prefix (pre means before).

 Postfix Notation: In the postfix notation the operators are written after the operands, so it

is called the postfix notation (post means after), it is also known as suffix notation or

reverse polish notation. The above postfix if written in postfix notation looks like follows;

AB+

Algorithm for Converting Infix into Postfix Expression

The following algorithm converts the infix expression into postfix expression. Java

Example

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

| P a g e 8

Example: Suppose we want to convert 2*3/(2-1)+5*(4-1) into postfix expression.

Algorithm for Evaluating Postfix Expression

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

| P a g e 9

 The following algorithm evaluates the postfix expression. Java Example

Example : Let us now consider an example. Suppose that we are asked to evaluate the

following postfix expression 6 2 + 5 9 * +.

class Stack:
 def __init__(self):
 self.items][=

 def is_empty(self):
 return len(self.items) == 0

 def push(self, item):
 self.items.append(item)

 def pop(self):
 if not self.is_empty:)(
 return self.items.pop)(
 return None

class BalanceChecker:
 @ staticmethod

 def check_balance(expression):

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

| P a g e 10

 open_delimiter_stack = Stack)(
 is_balanced = True

 index = 0

 while is_balanced and index < len(expression):
 next_character = expression[index]

 if next_character in :'[{('

 open_delimiter_stack.push(next_character)

 elif next_character in :']})'

 if open_delimiter_stack.is_empty:)(
 is_balanced = False

 else:
 open_delimiter = open_delimiter_stack.pop)(
 is_balanced = BalanceChecker.is_paired(open_delimiter, next_character)

 index += 1

 if not open_delimiter_stack.is_empty:)(
 is_balanced = False

 return is_balanced

 @ staticmethod

 def is_paired(open_delimiter, close_delimiter):
 return (open_delimiter == '(' and close_delimiter == ')') or \

 (open_delimiter == '[' and close_delimiter == ']') or \

 (open_delimiter == '{' and close_delimiter == '})'

def divide_by_2(dec_number):
 rem_stack = Stack)(
 while dec_number > 0:
 rem = dec_number % 2

 rem_stack.push(rem)

 dec_number = dec_number // 2

 bin_string "" =

 while not rem_stack.is_empty:)(
 bin_string += str(rem_stack.pop())

 return bin_string

def base_converter(dec_number, base):
 digits = "0123456789ABCDEF"
 rem_stack = Stack)(
 while dec_number > 0:
 rem = dec_number % base

 rem_stack.push(rem)

 dec_number = dec_number // base

 new_string "" =

 while not rem_stack.is_empty:)(
 new_string += digits[rem_stack.pop()]

 return new_string

 #Example usage of BalanceChecker

expressions]"})]([{" ,"])([{" ,"])([" ,"}])([{"[=

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

| P a g e 11

for expression in expressions:
 result = BalanceChecker.check_balance(expression)

 print(f"Expression '{expression}' is {'balanced' if result else 'not balanced'}.")

