

Fourier Integral and Fourier Transform

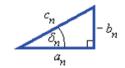
Frequency Spectrum

The Fourier series may be combined into a single cosine series. Let p be the fundamental period. If the function f(x) is not periodic at all on [-L, L], then the fundamental period of the extension of f(x) to the entire real line p=2L

Let the **phase** angle δ_n be such that $\tan \delta_n = -\frac{b_n}{a_n}$,

so that
$$\sin \delta_n = -\frac{b_n}{c_n}$$
 and $\cos \delta_n = +\frac{a_n}{c_n}$

where the **amplitude** is $c_n = \sqrt{a_n^2 + b_n^2}$.



Also, in the trigonometric identity $\cos A \cos B - \sin A \sin B \equiv \cos (A+B)$, replace A by $n\omega x$ and B by δ_n . Then

$$a_n \cos(n\omega x) + b_n \sin(n\omega x) = (c_n \cos \delta_n)\cos(n\omega x) - (c_n \sin \delta_n)\sin(n\omega x)$$

= $c_n \cos(n\omega x + \delta_n)$, where $\omega = \frac{2\pi}{p} = \frac{\pi}{L}$, $c_n = \sqrt{a_n^2 + b_n^2}$ and $\cos \delta_n = -\frac{b_n}{a_n}$

Therefore the phase angle or harmonic form of the Fourier series is

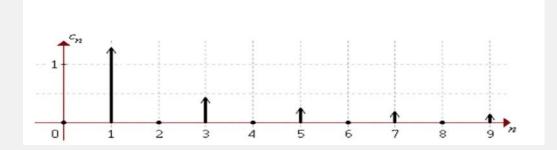
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} c_n \cos(n\omega x + \delta_n)$$

Example: Plot the frequency spectrum for the standard square wave,

$$f(x) = \begin{cases} -1 & (-1 < x < 0) \\ +1 & (0 \le x < +1) \end{cases}$$

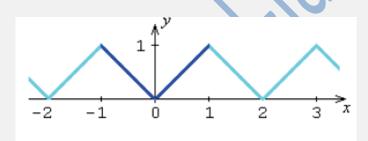
The Fourier series for the standard square wave is

$$f(x) = \frac{2}{\pi} \sum_{n=1}^{\infty} \left(\frac{1 - (-1)^n}{n} \sin n\pi x \right) = \frac{4}{\pi} \sum_{k=1}^{\infty} \left(\frac{1}{2k - 1} \sin(2k - 1)\pi x \right)$$

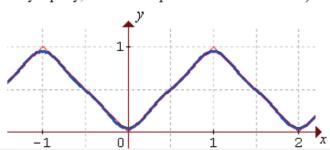


Example: Plot the frequency spectrum for the periodic extension of

$$f(x) = |x|, \quad -1 < x < 1$$



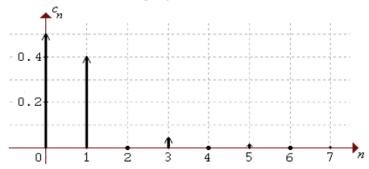
(which converges very rapidly, as this third partial sum demonstrates)



The harmonic amplitudes are

$$c_{n} = \begin{cases} \frac{1}{2} & (n=0) \\ \frac{2(1-(-1)^{n})}{(n\pi)^{2}} & (n \in \mathbb{N}) \end{cases} = \begin{cases} \frac{1}{2} & (n=0) \\ 0 & (n \text{ even}, n \ge 2) \\ \frac{4}{(n\pi)^{2}} & (n \text{ odd}) \end{cases}$$

The frequencies therefore diminish rapidly



Fourier Integrals

The Fourier series may be extended from (-L, L) to the entire real line.

Let
$$\omega_n = \frac{n\pi}{L}$$
 $\Rightarrow \omega_n - \omega_{n-1} = \frac{\pi}{L} = \Delta\omega$ $\Rightarrow \frac{1}{L} = \frac{\Delta\omega}{\pi}$
The Fourier series for $f(x)$ on $(-L, L)$ is

$$f(x) = \frac{1}{2L} \int_{-L}^{L} f(t) dt +$$

$$\sum_{n=1}^{\infty} \left(\frac{1}{L} \left(\int_{-L}^{L} f(t) \cos \left(\frac{n\pi t}{L} \right) dt \right) \cos \left(\frac{n\pi x}{L} \right) \right) + \frac{1}{L} \left(\int_{-L}^{L} f(t) \sin \left(\frac{n\pi t}{L} \right) dt \right) \sin \left(\frac{n\pi x}{L} \right) \right)$$

$$\Rightarrow f(x) = \frac{\Delta \omega}{2\pi} \int_{-L}^{L} f(t) dt +$$

$$\sum_{n=1}^{\infty} \left(\frac{\Delta \omega}{\pi} \left(\int_{-L}^{L} f(t) \cos(\omega_{n} t) dt \right) \cos(\omega_{n} x) + \frac{\Delta \omega}{\pi} \left(\int_{-L}^{L} f(t) \sin(\omega_{n} t) dt \right) \sin(\omega_{n} x) \right)$$

Now take the limit as $L \to \infty$ $\Rightarrow \Delta \omega \to 0$:

The first integral converges to some finite number, so the first term vanishes in the limit. The summation becomes an integral over all frequencies in the limit:

$$f(x) \to 0 +$$

$$\int_0^\infty \left(\frac{1}{\pi} \left(\int_{-\infty}^\infty f(t) \cos(\omega t) dt\right) \cos(\omega x) d\omega\right)$$

$$+ \frac{1}{\pi} \left(\int_{-\infty}^{\infty} f(t) \sin(\omega t) dt \right) \sin(\omega x) d\omega$$

Therefore the Fourier integral of f(x) is

$$f(x) = \int_0^\infty (A_\omega \cos(\omega x) + B_\omega \sin(\omega x)) d\omega$$

where the Fourier integral coefficients are

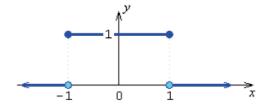
$$A_{\omega} = \frac{1}{\pi} \int_{-\infty}^{\infty} f(t) \cos(\omega t) dt$$
 and $B_{\omega} = \frac{1}{\pi} \int_{-\infty}^{\infty} f(t) \sin(\omega t) dt$

provided
$$\int_{-\infty}^{\infty} |f(x)| dx$$
 converges.

Example: Find the Fourier integral of

$$f(x) = \begin{cases} 1 & (-1 \le x \le +1) \\ 0 & (\text{otherwise}) \end{cases}$$

From the functional form and from the graph of f(x), it is obvious that f(x) is piecewise smooth and that $\int_{-\infty}^{\infty} |f(x)| dx$ converges to the value



$$A_{\omega} = \frac{1}{\pi} \int_{-\infty}^{\infty} f(t) \cos(\omega t) dt = \frac{1}{\pi} \int_{-1}^{1} \cos(\omega t) dt = \frac{1}{\pi} \left[\frac{\sin(\omega t)}{\omega} \right]_{-1}^{1} = \frac{2 \sin \omega}{\pi \omega}$$

The function f(x) is even $\Rightarrow B_{\omega} = 0$ for all ω .

Therefore the Fourier integral of f(x) is

$$f(x) = \int_0^\infty \frac{2\sin\omega}{\pi\omega} \cos(\omega x) d\omega$$

It also follows that

$$\int_0^\infty \frac{2\sin\omega}{\pi\omega} \cos(\omega x) d\omega = \begin{cases} 1 & (-1 < x < 1) \\ \frac{1}{2} & (x = \pm 1) \\ 0 & (\text{otherwise}) \end{cases}$$

Fourier series and Fourier integrals can be used to evaluate summations and definite integrals that would otherwise be difficult or impossible to evaluate. For example, setting x = 0 in Example 7.06.1, we find that

$$\int_0^\infty \frac{\sin t}{t} \, dt \, = \, \frac{\pi}{2}$$

Complex Fourier Integrals

$$\begin{split} f\left(x\right) &= \int_{0}^{\infty} \left(A_{\omega} \cos\left(\omega x\right) + B_{\omega} \sin\left(\omega x\right)\right) d\omega \\ &= \int_{0}^{\infty} \left(A_{\omega} \frac{e^{j\omega x} + e^{-j\omega x}}{2} + B_{\omega} \frac{e^{j\omega x} - e^{-j\omega x}}{2j}\right) d\omega \\ &= \int_{0}^{\infty} \left(\left(\frac{A_{\omega} - jB_{\omega}}{2}\right) e^{j\omega x} + \left(\frac{A_{\omega} + jB_{\omega}}{2}\right) e^{-j\omega x}\right) d\omega \\ &= \int_{0}^{\infty} \left(C_{\omega} e^{j\omega x} + C_{\omega}^{*} e^{-j\omega x}\right) d\omega, \quad \text{where} \quad C_{\omega} &= \frac{A_{\omega} - jB_{\omega}}{2} \end{split}$$

But
$$C_{\omega}^{*} = \frac{1}{\pi} \int_{-\infty}^{\infty} f(t) \frac{\cos(\omega t) + j\sin(\omega t)}{2} dt$$

 $= \frac{1}{\pi} \int_{-\infty}^{\infty} f(t) \frac{\cos(-\omega t) - j\sin(-\omega t)}{2} dt = C_{-\omega}$
and $\int_{0}^{\infty} (C_{-\omega} e^{-j\omega x}) d\omega = \int_{-\infty}^{0} (C_{+\omega} e^{+j\omega x}) d\omega$

By convention, the factor of $\frac{1}{2\pi}$ is extracted from the coefficients. Therefore the complex Fourier integral of f(t) is

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} C_{\omega} e^{j\omega t} dt$$

where the complex Fourier integral coefficients are

$$C_{\omega} = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt$$

(which is also the **Fourier transform** of f, $f(\omega) = \mathcal{F}[f(t)](\omega)$). ω is the **frequency** of the signal f(t).