

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

Intelligent Agent

Solving Problems by Searching

Under the assumptions that, the solution to any problem is a fixed sequence of actions.

For example, the agent might plan to drive from Baghdad to Basrah, then if the agent

knows the initial state and the environment is known and deterministic (it knows exactly

where it will be after the first action and whit it will perceive). Since only one percept is

possible after the first action, the solution can specify only one possible second action,

and so on.

The process of looking for a sequence of actions that reaches the goal is called Search.

A search algorithm takes a problem as input and returns a solution in the form of action

sequence. Once a solution is found, the actions it recommends can be carried out, this

is called the execution phase. Thus, we have a simple “formulate, search, execute”

design for the agent, as shown in figure below.

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

Intelligent Agent

After formulating a goal and a problem to solve, the agent calls a search procedure to

solve it. It then uses the solution to guide its actions, doing whatever the solution

recommends as the next thing to do. Once the solutions have been executed, the agent

will formulate a new goal.

1. Well defined problems and solutions: a problem can be defined formally by five

components:

1. The initial state that the agent starts in. for example the initial state for an agent

travel from Baghdad to Basrah is In (Baghdad).

2. A description of the possible actions available to the agent. Given a particular

state ‘s’, Actions(s) returns the set of actions that can be executed in s. We see

that each of these actions is applicable in s.

3. A description of what each action does. The formal name for this is the transition

model, specified by a function RESULT(s,a) that returns the state that results for

doing action a in stat s. the term successor also used to refer to any state

reachable from a given state by a single action. Together, the initial state, actions,

and transition model implicitly define the state space of the problem. The state

space forms a directed network or graph in which the nodes are states and the

links between nodes are actions. A path in the state space is a sequence of states

connected by a sequence of actions.

4. The goal test, which determines whether a given state is a goal state.

5. A path cost function that assigns a numeric cost to each path. A gent chooses a

cost function that reflects its own performance measure.

2. Example Problems:

The first example we examine is the vacuum world. This can be formulated as a

problem as follows:

1. States: the state is determined by both the agent location and the dirt locations.

Agent is in one of two locations, each of which might or might not contain dirt. Thus,

there are 2 X 22 = 8 possible world states.

2. Initial state: any state can be designated as the initial state.

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

Intelligent Agent

3. Action: in this simple environment, each state has just three actions: Left, Right,

and Suck.

4. Transition model: the actions have their expected effects, except that moving

left in the leftmost square, moving right in the right most square, and sucking in a

clean square have no effect.

5. Goal test: this checks whether all squares are clean.

6. Path cost: each step cost 1, so the path cost is the number of steps in the path.

Another example is the 8-puzzle, an instance of which is shown in figure below. It consists

of 3 X 3 board with eight numbered tiles and a blank space. A Tile adjacent to the blank

space can slide into the space. The object is to reach a specified goal state, such as the

one shown on the right of the figure. The standard formulation is as follows:

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

Intelligent Agent

1. States: a state description specifies the location of each eight tiles and the blank

in one of the nine squares.

2. Initial state: any state can be designated as the initial state.

3. Actions: the simplest formulation defines the actions as movements of the blank

space: Left, Right, Up, or Down.

4. Transition model: given a state and action, this returns the resulting state, for

example if we apply Left to the start state in the above figure, the resulting state

has the 5 and the blank switched.

5. Goal test: this checks whether the state matches the goal configuration.

6. Path cost: each step costs 1, so the path cost is the number of steps in the path.

3. Real-world problems

An example of the real-world problem is the route-finding problem. Is defined in terms

of specified locations and transitions along links between them. Route-finding algorithms

are used in a variety of applications. Some, such as Web sites and in-car system that

provide driving directions, routing video streams in computer networks, military operations

planning, airline travel-planning systems. Consider the airline travel problem that must be

solved by a travel-planning web site.

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

Intelligent Agent

1. States: each state obviously includes a location (airport) and the current time.

Furthermore, because the cost of an action may depend on previous action and

their status as domestic or international.

2. Initial state: this is specified by the user’s query.

3. Actions: take any flight from the current location, in any seat class, leaving after

the current time, leaving enough time for within-airport transfer if needed.

4. Transition model: the state resulting from taking a flight will have the flight’s

destination as the current locations and the flights arrival time as the current time.

5. Goal test: are we at the final destination specified by the user.

6. Path cost: this depends on cost, waiting time, customs and immigration

procedures, seat quality, time of day, type of airplane, frequent-flyer mileage

awards and so on.

Other examples of real world may include but not limited to the following:

• Touring problems are closing related to route-finding problems, but with an

important difference that is every city must be visited at least once.

• Traveling salesperson problem (TSP) it is a touring problem in which each city

must be visited exactly once.

• A VLSI layout problem requires positioning millions of components and

connections on a chip to minimize area, minimize circuit delays, minimize stray

capacitance, and maximize manufacturing yield.

• Robot navigation it a generalization of the route-finding problem described earlier.

• Automatic assembly sequencing of complex objects by a robot. In assembly

problems, the aim is to find an order in which to assemble the parts of some object.

If the wrong order is chosen, there will be no way to add some part later in the

sequence without undoing some of the work already done.

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

Intelligent Agent

2. Searching for Solutions: having formulated some problems, we now need to solve

them. A solution is an action sequence, so search algorithms work by considering

various possible action sequences. The possible action sequences starting at the

initial state form a search tree with the initial state at the root. The branches are

actions and the nodes correspond to states in the state spaced of the problem. Figure

below shows the first few steps in growing the search tree for finding a route between

two cities.

The root node of the tree corresponds to the initial state, In(Arad). The first step is to

test whether this is a goal state. Then we take an action by expanding the current

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

Intelligent Agent

state, that is, applying each legal action to the current state, thereby generating a

new set of states. In this case, we add three branches from the parent node In(Arad)

lead to three new child nodes: In(Sibiu), In(Timisoara), and In(Zerind). Now we must

choose which of these three possibilities to consider further.

This is the essence of search algorithm, following up one option now and putting the

others aside for later, in case the first choice does not lead to a solution. Suppose we

choose Sibiu first. We check to see whether it is a goal state and then expand it to get

In(Arad), In(Fagaras), In(Oradea), and In(RimincuVilcea). These nodes are leaf node,

that is , a node with no children in the tree. The set of all nodes available for expansion

is called frontier. The process of expanding nodes on the frontier continues until either

a solution is found or there are no more states to expands.

3. Measuring problem-solving performance: before we get into the design of specific

search algorithms, we need to consider the criteria that might be used to choose

among them, we can evaluate an algorithms performance in four ways:

1. Completeness: is the algorithm guaranteed to find a solution when there is

one.

2. Optimality: does the strategy find the optimal solution.

3. Time complexity: how long does it take to find a solution

4. Space complexity: how much memory is needed to perform the search.

UNINFORMED SEARCH STRATEGIES (Blind Search)

This section covers several search strategies that come under the heading of uninformed

search (also called blind search). The term means that the strategies have no additional

information about states beyond that provided in the problem definition. All they can do is

generate successors and distinguish a goal state from a non-goal state. All search

strategies are distinguished by the order in which nodes are expanded. Strategies

that know whether one-goal state is “more promising” than another are called informed

search or heuristic search strategies, they are covered in the next lecture.

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

Intelligent Agent

1. Breadth-first search: it is a simple strategy in which the root node is expanded first,

then all the successors of the root are expanded next, then their successors, and so

on. In general all the nodes are expanded at a given depth in the search tree before

any nodes at the next level are expanded. In Breadth-first search algorithm the

shallowest unexpanded node is chosen for expansion. This is achieved very simply

by using a FIFO queue for the frontier nodes. Thus, new nodes which are always

deeper than their parents go to the back of the queue, and old nodes, which are

shallower than the new nodes get expanded first.

How does breadth-first search rate according to the four criteria from the previous

section? We can easily see that it is complete, breadth-first search will eventually find

the goal node after generating all shallower nodes. Now, the shallowest goal node is

not necessarily the optimal one, technically, breadth-first search is optimal if the path

cost is a nondecreasing function of the depth of the node. The most common such

scenario is that all actions have the same cost. On the other hand, time and memory,

criteria are not good. Figure below shows why.

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

Intelligent Agent

2. Uniform-cost search: when all steps cost are equal, breadth-first search is optimal

because it always expands the shallowest unexpanded node. By a simple extension,

we can find an algorithm that is optimal with any step-cost function. Instead of

expanding the shallowest node, uniform-cost search expands the node n with the

lowest path cost g(n). This is done by storin the frontier nodes as a priority queue

ordered by g. in addition to the ordering of the queue by path cost, there are two other

significant differences from breadth-first search. The first is that the goal test is applied

to a node when it is selected for expansion. The second difference is that a test is

added in case a better path found to a node currently on the frontier. the algorithm is

shown in figure below.

The above figure explains the problem to get from Sibiu to Bucharest. The successors

of Sibiu are Rimnicu Vilcea and Fagaras, with costs 80 and 90, respectively. the least

cost node Rimnicu Vilcea is expanded next, adding Pitesti with cost 80 + 97 = 177.

The least cost is now Fagaras, so it is expanded, adding Bucharest with cost 99 + 211

= 310. Now a goal node has been generated, but uniform-cost search keeps going,

choosing Pitesti for expansion and adding a second path to Bucharest with cost 80 +

97 + 101 = 278. Now the algorithm checks to see if this new path is better than the old

one, it is, so the old one is discarded. Bucharest, now with g-cost 278, is selected for

expansion and solution is returned.

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

Intelligent Agent

3. Depth-first search: it always expands the deepest node in the current frontier of the

search tree. The progress of the search is illustrated in figure below.

The search proceeds immediately to the deepest level of the search tree, where the

nodes have no successors. As those nodes are expanded, they are dropped from the

frontier, so then the search “backs up” to the next deepest node that still has

unexplored successors.

Whereas breadth-first-search uses a FIFO queue, depth-first search uses a LIFO

queue. A LIFO queue means that the most recently generated node is chosen for

expansion. This must be the deepest unexpanded node because it is one deeper than

its parent, which, in turn wat the deepest unexpanded node when it was selected.

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

Intelligent Agent

It can be seen that depth-first search will explore the entire left subtree even if node

C is a goal node. If node J where also a goal node then depth-first search would return

it as a solution instead of C, which would be a better solution, hence depth first search

is not optimal. Additionally, depth-first search may generate all of the nodes in the

search tree, where m is the maximum depth of any node. This can be much greater

than the size of the state space.

4. Depth-limited search: to overcome the drawbacks of depth-first search in infinite

state space can be alleviated by supplying depth-first search with a predetermined

depth limit L, that is, nodes at depth l are treated as if they have not successors. This

approach is called depth-limited search. Even though, the depth limit solves some

problem, it also introduces an additional source of incompleteness. If we choose L <

d, that is the shallowest goal is beyond the depth limit. Depth-limit search will also be

nonoptimal if we choose L > d. sometimes, depth limits can be based on knowledge

of the problem. For example, on the map of Romania there are 20 cities. Therefore,

we know that it there is a solution, it must be of length 19 at the longest possible

choice. So L = 19.

5. Iterative deepening depth-first search: it is a general strategy, often used in

combination with depth-first tree search, that finds the bets depth limit. Id does this by

gradually increasing the limit, first 0, then 1, then 2, and so on. Until a goal is found.

This will occur when the depth limit reaches d, the depth of the shallowest goal node.

Iterative deepening combines the benefits of depth-first and breadth-first search. Like

depth-first search, its memory requirements are modest. Like breadth-first search, it

is complete and optimal when the path cost is a nondecreasing function of the depth

of the node.

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

Intelligent Agent

6. Bidirectional search: the idea behind bidirectional search is to run two simultaneous

searches, one forward from the initial state and the other backward from the goal,

hoping that the two searches meet in the middle.

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

Intelligent Agent

Bidirectional search is implemented by replacing the goal test with a check to see

whether the frontiers of the two searches intersect, if they do, a solution has been

found. The check can be done when each node is generated or selected for

expansion.

