
Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

 كلية التقنيات الطبية والصحية
ة ـيـبـطــــة الــــمــــظـــم الانــــــــــســق

 ةـــيــــــذكـــال

Subject: Data Structure

Class: Second

Lecturer: Asst. Prof. Mehdi Ebady Manaa

Lecture: (5)

Queues

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

| P a g e 2

Queues

The word queue is British for line (the kind you wait in). In Britain, to “queue up” means to get in

line. In computer science a queue is a data structure that is somewhat like a stack, except that in a

queue the first item inserted is the first to be removed (First-In-First-Out, FIFO), while in a stack,

as we’ve seen, the last item inserted is the first to be removed (LIFO). A queue works like the line

at the movies:

The first person to join the rear of the line is the first person to reach the front of the line and buy

a ticket. The last person to line up is the last person to buy a ticket (or—if the show is sold out—

to fail to buy a ticket). Figure 4 shows how such a queue looks.

Figure 4: A queue of people.

Examples of applications Queue:

1. Queue used to model real-world situations such as people waiting in line at a bank, airplanes

waiting to take off, or data packets waiting to be transmitted over the Internet.

2. There are various queues quietly doing their job in your computer’s (or the network’s) operating

system.

3. There’s a printer queue where print jobs wait for the printer to be available.

Also there are several possible applications for queues.

4. Stores, reservation centers, and other similar services typically process customer requests

according to the FIFO principle. A queue would therefore be a logical choice for a data structure

to handle transaction processing for such applications. For example, it would be a natural choice

for handling calls to the reservation center of an airline.

The Queue Abstract Data Type

Formally, the queue abstract data type defines a collection that keeps objects in a sequence, where

element access and deletion are restricted to the first element in the sequence, which is called the

front of the queue, and element insertion is restricted to the end of the sequence, which is called

the rear of the queue. This restriction enforces the rule that items are inserted and deleted in a

queue according to the first-in first-out (FIFO) principle. The queue abstract data type (ADT)

supports the following two fundamental methods:

enqueue(e): Insert element e at the rear of the queue.

dequeue(): Remove and return from the queue the

object at the front; an error occurs if the queue is empty.

Additionally, similar to the case with the Stack ADT, the queue ADT includes the following

supporting methods:

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

| P a g e 3

size(): Return the number of objects in the queue.

isEmpty(): Return a Boolean value that indicates whether the queue is empty.

front(): Return, but do not remove, the front object in the queue; an error occurs if the queue is

empty.

Figure 5: Operations of the Queue

enqueue(e):

Description: Here QUEUE is an array with N locations. FRONT and REAR points to the front

and rear of the QUEUE. ITEM is the value to be inserted.

1. If (REAR == N) Then [Check for overflow]

2. Print: Overflow

3. Else

4. If (FRONT and REAR == 0) Then [Check if QUEUE is empty]

 (a) Set FRONT = 1

 (b) Set REAR = 1

5. Else

6. Set REAR = REAR + 1 [Increment REAR by 1]

 [End of Step 4 If]

7. QUEUE[REAR] = ITEM

8. Print: ITEM inserted

 [End of Step 1 If]

9. Exit

dequeue():

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

| P a g e 4

Description: Here QUEUE is an array with N locations. FRONT and REAR points to the front

and rear of the QUEUE.

1. If (FRONT == 0) Then [Check for underflow]

2. Print: Underflow

3. Else

4. ITEM = QUEUE[FRONT]

5. If (FRONT == REAR) Then [Check if only one element is left]

 (a) Set FRONT = 0

 (b) Set REAR = 0

6. Else

7. Set FRONT = FRONT + 1 [Increment FRONT by 1]

 [End of Step 5 If]

8. Print: ITEM deleted

 [End of Step 1 If]

9. Exit

Figure 6: A Queue with some items removed

When you insert a new item in the Queue, the Front arrow moves upward, when you remove an

item, Rear also moves upward.

The trouble with this arrangement is that pretty soon the rear of the queue is at the end of the array

(the highest index). Even if there are empty cells at the beginning of the array, because you’ve

removed them with F, you still can’t insert a new item because Rear can’t go any further. Or can

it? This situation is shown in Figure 7.

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

| P a g e 5

 Figure 7. Rear arrow at the end of the array.

To avoid the problem of not being able to insert more items into the queue even when it’s not full,

the Front and Rear arrows wrap around to the beginning of the array. The results a circular queue

(sometimes called a ring buffer). Insert enough items to bring the Rear arrow to the top of the

array (index 9). Remove some items from the front of the array.

Now insert another item. You’ll see the Rear arrow wrap around from index 9 to index 0; the new

item will be inserted there. This situation is shown in Figure 8.

 Figure 8. Rear arrow wraps around

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

| P a g e 6

The queue ADT

The queue ADT is defined by the following operations:

constructor

Create a new, empty queue.

insert

Add a new item to the queue.

remove

Remove and return an item from the queue. The item that is returned is the first one that was added.

empty

Check whether the queue is empty.

We know that a linear queue is a “first in first out “ data structure,i.e.,

 Insertion can be made only at the end and

 Deletion can be made only at the front.

In a linear queue, the traversal through the queue is possible only once,i.e.,once an element is

deleted, we cannot insert another element in its position. This disadvantage of a linear queue is

overcome by a circular queue, thus saving memory.

Circular Queue

A circular queue is a Queue but a particular implementation of a queue. It is very efficient. It is

also quite useful in low level code, because insertion and deletion are totally independant, which

means that you don't have to worry about an interrupt handler trying to do an insertion at the same

time as your main code is doing a deletion.

Linear queue:

No more elements can be inserted in a linear queue now.

Circular queue:

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

| P a g e 7

 In a circular queue, after rear reaches the end of the queue, it can be reset to zero. This helps

in refilling the empty spaces in between.

The difficulty of managing front and rear in an array-based non-circular queue can be overcome if

we treat the queue position with index 0 as if it comes after the last position (in our case, index 9),

i.e., we treat the queue as circular. Note that we use the same array declaration of the queue.

Empty queue:

Empty queues:

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

| P a g e 8

Implementation of operations on a circular queue:

Testing a circular queue for overflow

There are two conditions:

 (front=0) and (rear=capacity-1)

 front=rear+1

If any of these two conditions is satisfied, it means that circular queue is full.

The enqueue Operation on a Circular Queue

There are three scenarios which need to be considered, assuming that the queue is not full:

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

| P a g e 9

1. If the queue is empty, then the value of the front and the rear variable will be -1 (i.e., the

sentinel value), then both front and rear are set to 0.

2. If the queue is not empty, then the value of the rear will be the index of the last element

of the queue, then the rear variable is incremented.

3. If the queue is not full and the value of the rear variable is equal to capacity -1 then rear

is set to 0.

The dequeue Operation on a Circular Queue

Again, there are three possibilities:

1. If there was only one element in the circular queue, then after the dequeue operation the

queue will become empty. This state of the circular queue is reflected by setting the front

and rear variables to -1.

2. If the value of the front variable is equal to CAPACITY-1, then set front variable to 0.

3. If neither of the above conditions hold, then the front variable is incremented

Priority Queues
Like an ordinary queue, a priority queue has a front and a rear, and items are removed from

the front. However, in a priority queue,

 items are ordered by key value so that the item with the lowest key (or in some

implementations the highest key) is always at the front.

 Items are inserted in the proper position to maintain the order.

A priority queue consists of entries, each of which contains a key called the priority of the entry.

A priority queue has only two operations other than the usual creation, clearing, size, full, and

empty operations:

 Insert an entry.

 Remove the entry having the largest (or smallest) key.

If entries have equal keys, then any entry with the largest key may be removed first.

Applications In a time-sharing computer system, for example, a large number of tasks may be

waiting for the CPU. Some of these tasks have higher priority than others. Hence the set of tasks

waiting for the CPU forms a priority queue. Other applications of priority queues include

simulations of time-dependent events (like the airport simulation) and solution of sparse systems

of linear equations by row reduction.

PRIORITY QUEUE CONCEPT

 A priority queue is best understood in comparison with a stack and a queue. To see this, imagine

a supermarket checkout, where customers, each with a certain number of items in the shopping

cart, arrive at the checkout counter:

 ItemsInCart Customer

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

| P a g e 10

 6 Mary //last to arrive

 12 Joe

 4 Jill

 9 Pete

 15 Stacy

 7 Bev //first to arrive

 CHECKOUT COUNTER

Suppose also that the entries <6, Mary>, <12, Joe> … <7, Bev> are placed in a data container,

to reflect order of arrival, with <7, Bev> first in, <15, Stacy> next in, and so on, and <6, Mary> in

last.

If the cashier serves the customers in order of arrival, that is, <7, Bev> first and <6, Mary>last, we

have a conventional queue, i.e. First In, First Out, or FIFO.

If the cashier serves the customers starting with entries <6, Mary>, and ending with <7, Bev>,

we have a stack, i.e. Last In, First Out, or LIFO.

If the cashier serves the customers with entries in the order <4, Jill>, <6, Mary>, <7, Bev>, …

ending with <15, Stacy>, that is, service in order of lowest number of shopping items, we have

a priority queue, i.e. The entry inserted with the lowest priority key, no matter when inserted, is

the first entry out.

In this example, the first data item of each entry, the number of shopping items, serves as the

priority key.

Notice the technical term entry. A priority queue consists of a set of entries into the queue, each

entry consisting of a priority key and a value.

Applications

 Scheduling jobs on a workstation holds jobs to be performed and their priorities. When a

job is finished or interrupted, highest-priority job is chosen using Extract-Max. New jobs

can be added using Insert function.

 Operating System Design – resource allocation

 Data Compression -Huffman algorithm

 Discrete Event simulation

 (1) Insertion of time-tagged events (time represents a priority of an event -- low time means

high priority)

 (2) Removal of the event with the smallest time tag

Implementation

 Linked Lists

 Using a binary Heap – a special binary tree with heap property

We show Front and Rear arrows to provide a comparison with an ordinary queue, but they’re not

really necessary. The algorithms know that the front of the queue is always at the top of the array

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

| P a g e 11

at nItems-1, and they insert items in order, not at the rear. Figure below shows the operation of

the PriorityQ class methods.

Two items removed from front of priority queue

Key Comparison Method

 Normally the entry with the highest priority has the lowest priority key value, and is extracted

from the priority queue first.

 That means that we need a way to compare the key values, so that we can say if the key of one

entry is greater or less than the key of another entry, and which key has the lowest value and which

the highest value.

The key comparison method may be very simple, based on integer values, as in the case of number

of shopping items above.

The Priority Queue ADT

A priority queue ADT will be implemented as a container of some kind that can support the

methods below.

 constructor

Create a new, empty queue.

insert

Add a new item to the queue.
remove

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

| P a g e 12

Remove and return an item from the queue. The item that is returned is the one with the

highest priority.
empty

Check whether the queue is empty.

Sorting With a Priority Queue

We can look at a priority queue as a black box. You can put entries into it, using insert(), in any

key order, take out a few entries, using removeMin(), put in some more and so on, as if using a

stack. But no matter how many we put in and take out, removeMin() always delivers the entry in

the queue with the lowest key value. This is obviously useful for sorting.

Suppose we want to sort a set of entries (each made up of a key and a value) in ascending order:

Step 1. Use insert() to insert, in any order, all the entries into the priority queue.

 Step 2. Use removeMin() to extract the entries from the queue, and print them, or place them in

an array. The entries are now sorted.

Class PriorityQueue

The insert() method checks whether there are any items; if not, it inserts one at index 0. Otherwise,

it starts at the top of the array and shifts existing items upward until it finds the place where the

new item should go. Then it inserts the item and increments nItems. Note that if there’s any

chance the priority queue is full, you should check for this possibility with isFull() before using

insert().

The front and rear fields aren’t necessary as they were in the Queue class because, as we noted,

front is always at nItems-1 and rear is always at 0.

The remove() method is simplicity itself: It decrements nItems and returns the item from the top

of the array. The isEmpty() and isFull() methods check if nItems is 0 or maxSize, respectively

class PriorityQueue:
 def __init__(self):
 self.queArray][=

 self.nItems = 0

 def insert(self, item):
 if self.nItems == 0:
 self.queArray.append(item)

 else:
 j = self.nItems - 1

 while j >= 0:

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

| P a g e 13

 if item > self.queArray[j]:
 self.queArray[j + 1] = self.queArray[j]

 else:
 break

 j -= 1

 self.queArray[j + 1] = item

 self.nItems += 1

 def remove(self):
 if self.nItems > 0:
 self.nItems -= 1

 return self.queArray.pop(self.nItems)

 else:
 raise IndexError("Priority queue is empty")

 #Example usage of PriorityQueue

pq = PriorityQueue)(
pq.insert (3)

pq.insert (1)

pq.insert (4)

pq.insert (2)

print("Removed items in priority order:")

while pq.nItems > 0:
 print(pq.remove())

