
C H A P T E R 4
Compression Members
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4.1 INTRODUCTION

Compression members are structural elements that are subjected only to axial com-
pressive forces; that is, the loads are applied along a longitudinal axis through the cen-
troid of the member cross section, and the stress can be taken as f = P/A, where f is
considered to be uniform over the entire cross section. This ideal state is never
achieved in reality, however, because some eccentricity of the load is inevitable.
Bending will result, but it usually can be regarded as secondary. As we shall see, the
AISC Specification equations for compression member strength account for this
accidental eccentricity.

The most common type of compression member occurring in buildings and
bridges is the column, a vertical member whose primary function is to support verti-
cal loads. In many instances, these members are also subjected to bending, and in
these cases, the member is a beam–column. We cover this topic in Chapter 6. Com-
pression members are also used in trusses and as components of bracing systems.
Smaller compression members not classified as columns are sometimes referred to as
struts.

In many small structures, column axial forces can be easily computed from the
reactions of the beams that they support or computed directly from floor or roof
loads. This is possible if the member connections do not transfer moment; in other
words, if the column is not part of a rigid frame. For columns in rigid frames, there
are calculable bending moments as well as axial forces, and a frame analysis is nec-
essary. The AISC Specification provides for three methods of analysis to obtain the
axial forces and bending moments in members of a rigid frame:

1. Direct analysis method
2. Effective length method
3. First-order analysis method

Except in very simple cases, computer software is used for the analysis. While the
details of these three methods are beyond the scope of the present chapter, more will
be said about them in Chapter 6 “Beam–Columns”. It is important to recognize,
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however, that these three methods are used to determine the required strengths of the
members (axial loads and bending moments). The available strengths are computed
by the methods of this chapter “Compression Members”, Chapter 5 “Beams”, and
Chapter 6 “Beam–Columns”.

4.2 COLUMN THEORY

Consider the long, slender compression member shown in Figure 4.1a. If the axial load
P is slowly applied, it will ultimately become large enough to cause the member to
become unstable and assume the shape indicated by the dashed line. The member is
said to have buckled, and the corresponding load is called the critical buckling load.
If the member is stockier, as shown in Figure 4.1b, a larger load will be required to
bring the member to the point of instability. For extremely stocky members, failure may
occur by compressive yielding rather than buckling. Prior to failure, the compressive
stress P�A will be uniform over the cross section at any point along the length, whether
the failure is by yielding or by buckling. The load at which buckling occurs is a func-
tion of slenderness, and for very slender members this load could be quite small.

If the member is so slender (we give a precise definition of slenderness shortly)
that the stress just before buckling is below the proportional limit—that is, the mem-
ber is still elastic—the critical buckling load is given by

(4.1)

where E is the modulus of elasticity of the material, I is the moment of inertia of the
cross-sectional area with respect to the minor principal axis, and L is the length of
the member between points of support. For Equation 4.1 to be valid, the member must
be elastic, and its ends must be free to rotate but not translate laterally. This end
condition is satisfied by hinges or pins, as shown in Figure 4.2. This remarkable
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4.2 Column Theory 111

FIGURE 4.3

relationship was first formulated by Swiss mathematician Leonhard Euler and published
in 1759. The critical load is sometimes referred to as the Euler load or the Euler buck-
ling load. The validity of Equation 4.1 has been demonstrated convincingly by
numerous tests. Its derivation is given here to illustrate the importance of the end
conditions.

For convenience, in the following derivation, the member will be oriented with
its longitudinal axis along the x-axis of the coordinate system given in Figure 4.3. The
roller support is to be interpreted as restraining the member from translating either up
or down. An axial compressive load is applied and gradually increased. If a tempo-
rary transverse load is applied so as to deflect the member into the shape indicated by
the dashed line, the member will return to its original position when this temporary
load is removed if the axial load is less than the critical buckling load. The critical
buckling load, Pcr, is defined as the load that is just large enough to maintain the
deflected shape when the temporary transverse load is removed.

The differential equation giving the deflected shape of an elastic member subjected
to bending is

(4.2)

where x locates a point along the longitudinal axis of the member, y is the deflection
of the axis at that point, and M is the bending moment at the point. E and I were pre-
viously defined, and here the moment of inertia I is with respect to the axis of bend-
ing (buckling). This equation was derived by Jacob Bernoulli and independently by
Euler, who specialized it for the column buckling problem (Timoshenko, 1953). If we
begin at the point of buckling, then from Figure 4.3 the bending moment is Pcry. 
Equation 4.2 can then be written as

where the prime denotes differentiation with respect to x. This is a second-order, lin-
ear, ordinary differential equation with constant coefficients and has the solution

y = A cos(cx) + B sin(cx)
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where

and A and B are constants. These constants are evaluated by applying the following
boundary conditions:

At x = 0, y = 0: 0 = A cos(0) + B sin(0) A = 0

At x = L, y = 0: 0 = B sin(cL)

This last condition requires that sin(cL) be zero if B is not to be zero (the trivial
solution, corresponding to P = 0). For sin(cL) = 0,

cL = 0, p, 2p, 3p, . . . = np, n = 0, 1, 2, 3, . . .

From

we obtain

The various values of n correspond to different buckling modes; n = 1 represents the
first mode, n = 2 the second, and so on. A value of zero gives the trivial case of no
load. These buckling modes are illustrated in Figure 4.4. Values of n larger than 1 are
not possible unless the compression member is physically restrained from deflecting
at the points where the reversal of curvature would occur.
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The solution to the differential equation is therefore

and the coefficient B is indeterminate. This result is a consequence of approximations
made in formulating the differential equation; a linear representation of a nonlinear
phenomenon was used.

For the usual case of a compression member with no supports between its ends, 
n = 1 and the Euler equation is written as

(4.3)

It is convenient to rewrite Equation 4.3 as

where A is the cross-sectional area and r is the radius of gyration with respect to the
axis of buckling. The ratio L�r is the slenderness ratio and is the measure of a mem-
ber’s slenderness, with large values corresponding to slender members.

If the critical load is divided by the cross-sectional area, the critical buckling
stress is obtained:

(4.4)

At this compressive stress, buckling will occur about the axis corresponding to r.
Buckling will take place as soon as the load reaches the value given by Equation 4.3,
and the column will become unstable about the principal axis corresponding to the
largest slenderness ratio. This axis usually is the axis with the smaller moment of
inertia (we examine exceptions to this condition later). Thus the minimum moment
of inertia and radius of gyration of the cross section should ordinarily be used in
Equations 4.3 and 4.4.
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E X A M P L E  4 . 1

A W12 × 50 is used as a column to support an axial compressive load of 145 kips.
The length is 20 feet, and the ends are pinned. Without regard to load or resistance
factors, investigate this member for stability. (The grade of steel need not be known:
The critical buckling load is a function of the modulus of elasticity, not the yield
stress or ultimate tensile strength.)
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For a W12 × 50,

Because the applied load of 145 kips is less than Pcr, the column remains stable and
has an overall factor of safety against buckling of 278.9�145 = 1.92.
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FIGURE 4.5

S O L U T I O N

A N S W E R

Early researchers soon found that Euler’s equation did not give reliable results for
stocky, or less slender, compression members. The reason is that the small slenderness
ratio for members of this type causes a large buckling stress (from Equation 4.4). If
the stress at which buckling occurs is greater than the proportional limit of the mate-
rial, the relation between stress and strain is not linear, and the modulus of elasticity
E can no longer be used. (In Example 4.1, the stress at buckling is Pcr�A = 278.9�14.6 =
19.10 ksi, which is well below the proportional limit for any grade of structural steel.)
This difficulty was initially resolved by Friedrich Engesser, who proposed in 1889 the
use of a variable tangent modulus, Et, in Equation 4.3. For a material with a
stress–strain curve like the one shown in Figure 4.5, E is not a constant for stresses
greater than the proportional limit Fpl. The tangent modulus Et is defined as the slope
of the tangent to the stress–strain curve for values of f between Fpl and Fy. If the com-
pressive stress at buckling, Pcr �A, is in this region, it can be shown that

(4.5)

Equation 4.5 is identical to the Euler equation, except that Et is substituted for E.
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The stress–strain curve shown in Figure 4.5 is different from those shown earlier
for ductile steel (in Figures 1.3 and 1.4) because it has a pronounced region of nonlin-
earity. This curve is typical of a compression test of a short length of W-shape called
a stub column, rather than the result of a tensile test. The nonlinearity is primarily because
of the presence of residual stresses in the W-shape. When a hot-rolled shape cools after
rolling, all elements of the cross section do not cool at the same rate. The tips of the
flanges, for example, cool faster than the junction of the flange and the web. This un-
even cooling induces stresses that remain permanently. Other factors, such as welding
and cold-bending to create curvature in a beam, can contribute to the residual stress,
but the cooling process is its chief source.

Note that Et is smaller than E and for the same L�r corresponds to a smaller critical
load, Pcr. Because of the variability of Et, computation of Pcr in the inelastic range by the
use of Equation 4.5 is difficult. In general, a trial-and-error approach must be used, and
a compressive stress–strain curve such as the one shown in Figure 4.5 must be used to
determine Et for trial values of Pcr. For this reason, most design specifications, including
the AISC Specification, contain empirical formulas for inelastic columns.

Engesser’s tangent modulus theory had its detractors, who pointed out several
inconsistencies. Engesser was convinced by their arguments, and in 1895 he refined
his theory to incorporate a reduced modulus, which has a value between E and Et.
Test results, however, always agreed more closely with the tangent modulus theory.
Shanley (1947) resolved the apparent inconsistencies in the original theory, and
today the tangent modulus formula, Equation 4.5, is accepted as the correct one for
inelastic buckling. Although the load predicted by this equation is actually a lower
bound on the true value of the critical load, the difference is slight (Bleich, 1952).

For any material, the critical buckling stress can be plotted as a function of slen-
derness, as shown in Figure 4.6. The tangent modulus curve is tangent to the Euler curve
at the point corresponding to the proportional limit of the material. The composite
curve, called a column strength curve, completely describes the strength of any column
of a given material. Other than Fy, E, and Et, which are properties of the material, the
strength is a function only of the slenderness ratio.

4.2 Column Theory 115

FIGURE 4.6
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Effective Length

Both the Euler and tangent modulus equations are based on the following assumptions:

1. The column is perfectly straight, with no initial crookedness.

2. The load is axial, with no eccentricity.

3. The column is pinned at both ends.

The first two conditions mean that there is no bending moment in the member before
buckling. As mentioned previously, some accidental moment will be present, but in
most cases it can be ignored. The requirement for pinned ends, however, is a serious
limitation, and provisions must be made for other support conditions. The pinned-end
condition requires that the member be restrained from lateral translation, but not
rotation, at the ends. Constructing a frictionless pin connection is virtually impossi-
ble, so even this support condition can only be closely approximated at best. Obvi-
ously, all columns must be free to deform axially.

Other end conditions can be accounted for in the derivation of Equation 4.3. In gen-
eral, the bending moment will be a function of x, resulting in a nonhomogeneous dif-
ferential equation. The boundary conditions will be different from those in the original
derivation, but the overall procedure will be the same. The form of the resulting equa-
tion for Pcr will also be the same. For example, consider a compression member pinned
at one end and fixed against rotation and translation at the other, as shown in Figure 4.7.
The Euler equation for this case, derived in the same manner as Equation 4.3, is

or
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Thus this compression member has the same load capacity as a column that is pinned
at both ends and is only 70% as long as the given column. Similar expressions can be
found for columns with other end conditions.

The column buckling problem can also be formulated in terms of a fourth-order
differential equation instead of Equation 4.2. This proves to be convenient when
dealing with boundary conditions other than pinned ends.

For convenience, the equations for critical buckling load will be written as

(4.6a/4.6b)

where KL is the effective length, and K is the effective length factor. The effective
length factor for the fixed-pinned compression member is 0.70. For the most favor-
able condition of both ends fixed against rotation and translation, K = 0.5. Values of
K for these and other cases can be determined with the aid of Table C-A-7.1 in the
Commentary to AISC Specification Appendix 7. The three conditions mentioned
thus far are included, as well as some for which end translation is possible. Two val-
ues of K are given: a theoretical value and a recommended design value to be used
when the ideal end condition is approximated. Hence, unless a “fixed” end is perfectly
fixed, the more conservative design values are to be used. Only under the most
extraordinary circumstances would the use of the theoretical values be justified. Note,
however, that the theoretical and recommended design values are the same for
conditions (d) and (f) in Commentary Table C-A-7.1. The reason is that any devia-
tion from a perfectly frictionless hinge or pin introduces rotational restraint and
tends to reduce K. Therefore, use of the theoretical values in these two cases is
conservative.

The use of the effective length KL in place of the actual length L in no way alters
any of the relationships discussed so far. The column strength curve shown in Figure 4.6
is unchanged except for renaming the abscissa KL�r. The critical buckling stress
corresponding to a given length, actual or effective, remains the same.

4.3 AISC REQUIREMENTS

The basic requirements for compression members are covered in Chapter E of the
AISC Specification. The nominal compressive strength is

Pn = FcrAg (AISC Equation E3-1)

For LRFD,

Pu ≤ fcPn

where
Pu = sum of the factored loads
fc = resistance factor for compression = 0.90

fcPn = design compressive strength
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For ASD,

where
Pa = sum of the service loads
Ωc = safety factor for compression = 1.67

Pn�Ωc = allowable compressive strength

If an allowable stress formulation is used,

fa ≤ Fa

where
fa = computed axial compressive stress = Pa�Ag

Fa = allowable axial compressive stress

(4.7)

In order to present the AISC expressions for the critical stress Fcr, we first define the
Euler load as

This is the critical buckling load according to the Euler equation. The Euler stress is

(AISC Equation E3-4)

With a slight modification, this expression will be used for the critical stress in the elas-
tic range. To obtain the critical stress for elastic columns, the Euler stress is reduced
as follows to account for the effects of initial crookedness:

Fcr = 0.877Fe (4.8)

For inelastic columns, the tangent modulus equation, Equation 4.6b, is replaced by the
exponential equation

(4.9)

With Equation 4.9, a direct solution for inelastic columns can be obtained, avoiding
the trial-and-error approach inherent in the use of the tangent modulus equation. At the
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boundary between inelastic and elastic columns, Equations 4.8 and 4.9 give the same
value of Fcr. This occurs when KL�r is approximately

To summarize,

(4.10)

(4.11)

The AISC Specification provides for separating inelastic and elastic behavior based on
either the value of KL�r (as in equations 4.10 and 4.11) or the value of the ratio Fy�Fe.
The limiting value of Fy�Fe can be derived as follows. From AISC Equation E3-4,

For 

The complete AISC Specification for compressive strength is as follows:

(AISC Equation E3-2)

(AISC Equation E3-3)

In this book, we will usually use the limit on KL�r, as expressed in Equations 4.10
and 4.11. These requirements are represented graphically in Figure 4.8.
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AISC Equations E3-2 and E3-3 are a condensed version of five equations that
cover five ranges of KL�r (Galambos, 1988). These equations are based on experi-
mental and theoretical studies that account for the effects of residual stresses and an
initial out-of-straightness of L�1500, where L is the member length. A complete
derivation of these equations is given by Tide (2001).

Although AISC does not require an upper limit on the slenderness ratio KL�r, an
upper limit of 200 is recommended (see user note in AISC E2). This is a practical
upper limit, because compression members that are any more slender will have little
strength and will not be economical.

120 Chapter 4 Compression Members

FIGURE 4.8

E X A M P L E  4 . 2

A W14 × 74 of A992 steel has a length of 20 feet and pinned ends. Compute the
design compressive strength for LRFD and the allowable compressive strength for
ASD.

Slenderness ratio:

Since 96.77 < 113, use AISC Equation E3-2.
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The nominal strength is

Pn = FcrAg = 25.21(21.8) = 549.6 kips

The design strength is

fcPn = 0.90(549.6) = 495 kips

From Equation 4.7, the allowable stress is

Fa = 0.6Fcr = 0.6(25.21) = 15.13 ksi

The allowable strength is

FaAg = 15.13(21.8) = 330 kips

Design compressive strength = 495 kips. Allowable compressive 
strength = 330 kips.

4.4 Local Stability 121

In Example 4.2, ry < rx, and there is excess strength in the x-direction. Square
structural tubes (HSS) are efficient shapes for compression members because ry = rx
and the strength is the same for both axes. Hollow circular shapes are sometimes used
as compression members for the same reason.

The mode of failure considered so far is referred to as flexural buckling, as the
member is subjected to flexure, or bending, when it becomes unstable. For some
cross-sectional configurations, the member will fail by twisting (torsional buckling)
or by a combination of twisting and bending (flexural-torsional buckling). We consider
these infrequent cases in Section 4.8.

4.4 LOCAL STABILITY

The strength corresponding to any overall buckling mode, however, such as flexural
buckling, cannot be developed if the elements of the cross section are so thin that local
buckling occurs. This type of instability is a localized buckling or wrinkling at an iso-
lated location. If it occurs, the cross section is no longer fully effective, and the mem-
ber has failed. I-shaped cross sections with thin flanges or webs are susceptible to this
phenomenon, and their use should be avoided whenever possible. Otherwise, the
compressive strength given by AISC Equations E3-2 and E3-3 must be reduced. The
measure of this susceptibility is the width-to-thickness ratio of each cross-sectional
element. Two types of elements must be considered: unstiffened elements, which are

L R F D
S O L U T I O N

A S D
S O L U T I O N

A N S W E R
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unsupported along one edge parallel to the direction of load, and stiffened elements,
which are supported along both edges.

Limiting values of width-to-thickness ratios are given in AISC B4.1, “Classi-
fication of Sections for Local Buckling.” For compression members, shapes are
classified as slender or nonslender. If a shape is slender, its strength limit state is
local buckling, and the corresponding reduced strength must be computed. The
width-to-thickness ratio is given the generic symbol l. Depending on the particu-
lar cross-sectional element, l for I shapes is either the ratio b/t or h/tw, both of which
are defined presently. If l is greater than the specified limit (denoted lr), the shape
is slender.

AISC Table B4.1a shows the upper limit, lr, for nonslender members of var-
ious cross-sectional shapes. If l ≤ lr, the shape is nonslender. Otherwise, the
shape is slender. The table is divided into two parts: unstiffened elements and stiff-
ened elements. (For beams, a shape can be compact, noncompact, or slender, and
the limiting values of l are given in AISC Table B4.1b. We cover beams in Chap-
ter 5.) For I shapes, the projecting flange is considered to be an unstiffened
element, and its width can be taken as half of the full nominal width. Using AISC
notation gives

where bf and tf are the width and thickness of the flange. The upper limit is

The webs of I shapes are stiffened elements, and the stiffened width is the distance
between the roots of the flanges. The width-to-thickness parameter is

where h is the distance between the roots of the flanges, and tw is the web thickness.
The upper limit is

Stiffened and unstiffened elements of various cross-sectional shapes are illustrated
in Figure 4.9. The appropriate compression member limit, lr, from AISC B4.1 is given
for each case.
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4.4 Local Stability 123
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E X A M P L E  4 . 3

Investigate the column of Example 4.2 for local stability.

For a W14 × 74, bf = 10.1 in., tf = 0.785 in., and
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where kdes is the design value of k. (Different manufacturers will produce this shape
with different values of k. The design value is the smallest of these values. The
detailing value is the largest.)

Local instability is not a problem.
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. .

E

Fy

= = > (OK)
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A N S W E R

In Example 4.3, the width-to-thickness ratios bf �2tf and h�tw were computed.
This is not necessary, however, because these ratios are tabulated in the dimensions
and properties table. In addition, shapes that are slender for compression are indicated
with a footnote (footnote c).

It is permissible to use a cross-sectional shape that does not satisfy the width-to-
thickness ratio requirements, but such a member may not be permitted to carry as
large a load as one that does satisfy the requirements. In other words, the strength
could be reduced because of local buckling. The overall procedure for making this
investigation is as follows.

• If the width-to-thickness ratio l is greater than lr, use the provisions of
AISC E7 and compute a reduction factor Q.

• Compute KL�r and Fe as usual.

•

(AISC Equation E7-2)

•

Fcr = 0.877Fe (AISC Equation E7-3)

• The nominal strength is Pn = FcrAg (AISC Equation E7-1)

The reduction factor Q is the product of two factors—Qs for unstiffened elements and
Qa for stiffened elements. If the shape has no slender unstiffened elements, Qs = 1.0.
If the shape has no slender stiffened elements, Qa = 1.0.

Many of the shapes commonly used as columns are not slender, and the reduction
will not be needed. This includes most (but not all) W-shapes. However, a large num-
ber of hollow structural shapes (HSS), double angles, and tees have slender elements.

If or
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E

QF
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> >4 71 2 25. . ,
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AISC Specification Section E7.1 gives the procedure for calculating Qs for slender
unstiffened elements. The procedure is straightforward, and involves comparing the
width-to-thickness ratio with a limiting value and then computing Qs from an expres-
sion that is a function of the width-to-thickness ratio, Fy, and E.

The computation of Qa for slender stiffened elements is given in AISC E7.2 and
is slightly more complicated than the procedure for unstiffened elements. The general
procedure is as follows.

• Compute an effective area of the cross section. This requires a knowledge of
the stress in the effective area, so iteration is required. The Specification allows
a simplifying assumption, however, so iteration can be avoided.

• Compute Qa = Ae�Ag, where Ae is the effective area, and Ag is the gross or
unreduced area.

The details of the computation of Qs and Qa will not be given here but will be shown
in the following example, which illustrates the procedure for an HSS.

4.4 Local Stability 125

E X A M P L E  4 . 4

Determine the axial compressive strength of an HSS 8 × 4 × 1⁄8 with an effective
length of 15 feet with respect to each principal axis. Use Fy = 46 ksi.

S O L U T I O N Compute the overall, or flexural, buckling strength.

Since 105.3 < 118, use AISC Equation E3-2.

The nominal strength is

Pn = FcrAg = 21.82(2.70) = 58.91 kips

Check width-to-thickness ratios:

F Fcr
F F

y
y e= = =0 658 0 658 46 21 846 25 81. . ( ) .( ) ( . )� � 22 ksi

F
E

KL r
e = = =p p2

2

2

2

29 000

105 3
25 81

( )

( , )

( . )
.

�
ksi

4 71 4 71
29 000

46
118. .

,E

Fy
= =

Maximum (OK)
KL

r

KL

ry
= = × = <15 12

1 71
105 3 200

.
.
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From the dimensions and properties table in the Manual, the width-to-thickness
ratio for the larger overall dimension is

The ratio for the smaller dimension is

From AISC Table B4.1a, Case 6 (and Figure 4.9 in this book), the upper limit for
nonslender elements is

Since the larger dimension element is slender and the local 

buckling strength must be computed. (Although the limiting width-to-thickness ratio
is labeled b/t in the table, that is a generic notation, and it applies to h�t as well.)

Because this cross-sectional element is a stiffened element, Qs = 1.0, and Qa

must be computed from AISC Section E7.2. The shape is a rectangular section of
uniform thickness, with 

So AISC E7.2 (b) applies, where

and Ae is the reduced effective area. The Specification user note for square and rec-
tangular sections permits a value of f = Fy to be used in lieu of determining f by
iteration. From AISC Equation E7-18, the effective width of the slender element is

(AISC Equation E7-18)

For the 8-inch side, using f = Fy and the design thickness* from the dimensions and
properties table,

be = −
⎡
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126 Chapter 4 Compression Members

*The design thickness of an HSS is 0.93 times the nominal thickness (AISC B4.2). Using the design thickness in strength
computations is a conservative way to account for tolerances in the manufacturing process.
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From AISC B4.1(b) and the discussion in Part 1 of the Manual, the unreduced
length of the 8-inch side between the corner radii can be taken as

b = 8 − 3t = 8 − 3(0.116) = 7.652 in.

where the corner radius is taken as 1.5 times the design thickness.

The total loss in area is therefore

2(b − be)t = 2(7.652 − 4.784)(0.116) = 0.6654 in.2

and the reduced area is

Ae = 2.70 − 0.6654 = 2.035 in.2

The reduction factor is

Compute the local buckling strength:

∴ Use AISC Equation E7-2

Pn = FcrAg = 19.76(2.70) = 53.35 kips

Since this is less than the flexural buckling strength of 58.91 kips, local buckling
controls.

Design strength = fcPn = 0.90(53.35) = 48.0 kips

(Allowable stress = 0.6Fcr = 0.6(19.76) = 11.9 ksi)

Allowable strength kips= = =
Pn

Ω
53 35
1 67

32 0
.

.
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128 Chapter 4 Compression Members

As an initial trial value, use

f = Fcr = 19.76 ksi (the value obtained above after using an initial value of 
f = Fy)

The total loss in area is

2(b − be)t = 2(7.652 − 6.65)(0.116) = 0.2325 in.2

and the reduced area is

Ae = 2.70 − 0.2325 = 2.468 in.2

The reduction factor is

Compute the local buckling strength.

∴ Use AISC Equation E7-2

Try f = 21.26 ksi:

The total loss in area is

2(b − be)t = 2(7.652 − 6.477)(0.116) = 0.2726 in.2

and the reduced area is

Ae = 2.70 − 0.2726 = 2.427 in.2
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ALTERNATIVE SOLUTION WITH f DETERMINED BY ITERATION
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The reduction factor is

Compute the local buckling strength.

∴ Use AISC Equation E7-2

Try f = 21.15 ksi:

The total loss in area is

2(b − be)t = 2(7.652 − 6.489)(0.116) = 0.2698 in.2

and the reduced area is

Ae = 2.70 − 0.2698 = 2.430 in.2

The reduction factor is

Compute the local buckling strength.

∴ Use AISC Equation E7-2
KL
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= <105 3 124 7. .
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Recall that AISC Equation E7-18 for be applies when In the present
case,

Since 66 > 51.8, AISC Equation E7-18 does apply.

Pn = FcrAg = 21.16(2.70) = 57.13 kips ∴ Local buckling controls

Design strength = fcPn = 0.90(57.13) = 51.4 kips

(Allowable stress = 0.6Fcr = 0.6(21.16) = 12.7 ksi)

Allowable strength kips
Pn

Ω
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1 67
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4.5 TABLES FOR COMPRESSION MEMBERS

The Manual contains many useful tables for analysis and design. For compression
members whose strength is governed by flexural buckling (that is, not local buck-
ing), Table 4-22 in Part 4 of the Manual, “Design of Compression Members,” can
be used. This table gives values of fcFcr (for LRFD) and Fcr�Ωc (for ASD) as a func-
tion of KL�r for various values of Fy. This table stops at the recommended upper
limit of KL�r = 200. The available strength tables, however, are the most useful.
These tables, which we will refer to as the “column load tables,” give the available
strengths of selected shapes, both fcPn for LRFD and Pn�Ωc for ASD, as a function of
the effective length KL. These tables include values of KL up to those corresponding
to KL�r = 200.

The use of the tables is illustrated in the following example.

L R F D
S O L U T I O N

A S D
S O L U T I O N
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4.5 Tables for Compression Members 131

E X A M P L E  4 . 5

Compute the available strength of the compression member of Example 4.2 with the
aid of (a) Table 4-22 from Part 4 of the Manual and (b) the column load tables.

a. From Example 4.2, KL�r = 96.77 and Fy = 50 ksi. Values of fcFcr in 
Table 4-22 are given only for integer values of KL�r; for decimal values,
KL�r may be rounded up or linear interpolation may be used. For unifor-
mity, we use interpolation in this book for all tables unless otherwise
indicated. For KL�r = 96.77 and Fy = 50 ksi,

fcFcr = 22.67 ksi

fcPn = fcFcrAg = 22.67(21.8) = 494 kips

b. The column load tables in Part 4 of the Manual give the available strength
for selected W-, HP-, single-angle, WT-, HSS, pipe, double-angle, and com-
posite shapes. (We cover composite construction in Chapter 9.) The tabular
values for the symmetrical shapes (W, HP, HSS and pipe) were calculated by
using the minimum radius of gyration for each shape. From Example 4.2, 
K = 1.0, so

KL = 1.0(20) = 20 ft

For a W14 × 74, Fy = 50 ksi and KL = 20 ft,

fcPn = 495 kips

a. From Example 4.2, KL�r = 96.77 and Fy = 50 ksi. By interpolation, for KL�r =
96.77 and Fy = 50 ksi,

Fcr�Ωc = 15.07 ksi

Note that this is the allowable stress, Fa = 0.6Fcr. Therefore, the allowable
strength is

b. From Example 4.2, K = 1.0, so

KL = 1.0(20) = 20 ft

From the column load tables, for a W14 × 74 with Fy = 50 ksi and KL = 20 ft,

Pn

cΩ
= 329 kips

P
F An

c
a gΩ

= = =15 07 21 8 329. ( . ) kips

L R F D
S O L U T I O N

A S D
S O L U T I O N
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The values from Table 4-22 (Manual) are based on flexural buckling and AISC
Equations E3-2 and E3-3. Thus, local stability is assumed, and width-thickness ratio
limits must not be exceeded. Although some shapes in the column load tables exceed
those limits (and they are identified with a “c” footnote), the tabulated strength has
been computed according to the requirements of AISC Section E7, “Members with
Slender Elements,” and no further reduction is needed.

From a practical standpoint, if a compression member to be analyzed can be found
in the column load tables, then these tables should be used. Otherwise, Table 4-22 can
be used for the flexural buckling strength. If the member has slender elements, the local
buckling strength must be computed using the provisions of AISC E7.

4.6 DESIGN

The selection of an economical rolled shape to resist a given compressive load is
simple with the aid of the column load tables. Enter the table with the effective length
and move horizontally until you find the desired available strength (or something
slightly larger). In some cases, you must continue the search to be certain that you
have found the lightest shape. Usually the category of shape (W, WT, etc.) will have
been decided upon in advance. Often the overall nominal dimensions will also be
known because of architectural or other requirements. As pointed out earlier, all tab-
ulated values correspond to a slenderness ratio of 200 or less. The tabulated unsym-
metrical shapes—the structural tees and the single and double angles—require special
consideration and are covered in Section 4.8.

132 Chapter 4 Compression Members

E X A M P L E  4 . 6

A compression member is subjected to service loads of 165 kips dead load and
535 kips live load. The member is 26 feet long and pinned at each end. Use
A992 steel and select a W14 shape.

Calculate the factored load:

Pu = 1.2D + 1.6L = 1.2(165) + 1.6(535) = 1054 kips

∴ Required design strength fcPn = 1054 kips.

From the column load tables for KL = 1.0(26) = 26 ft, a W14 × 145 has a design
strength of 1230 kips.

Use a W14 × 145.

Calculate the total applied load:

Pa = D + L = 165 + 535 = 700 kips

∴ Required allowable strength 
Pn

cΩ
= 700 kips

L R F D
S O L U T I O N

A S D
S O L U T I O N

A N S W E R
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From the column load tables for KL = 1.0(26) = 26 ft, a W14 × 132 has an allow-
able strength of 702 kips.

Use a W14 × 132.

4.6 Design 133

E X A M P L E  4 . 7

Select the lightest W-shape that can resist a service dead load of 62.5 kips and
a service live load of 125 kips. The effective length is 24 feet. Use ASTM
A992 steel.

The appropriate strategy here is to find the lightest shape for each nominal depth in
the column load tables and then choose the lightest overall.

The factored load is

Pu = 1.2D + 1.6L = 1.2(62.5) + 1.6(125) = 275 kips

From the column load tables, the choices are as follows:

W8: There are no W8s with fcPn ≥ 275 kips.

W10: W10 × 54, fcPn = 282 kips

W12: W12 × 58, fcPn = 292 kips

W14: W14 × 61, fcPn = 293 kips

Note that the strength is not proportional to the weight (which is a function of the
cross-sectional area).

Use a W10 × 54.

The total applied load is

Pa = D + L = 62.5 + 125 = 188 kips

From the column load tables, the choices are as follows:

W8: There are no W8s with Pn�Ωc ≥ 188 kips.

W10: W10 × 54, Pn

cΩ
= 188 kips

A N S W E R

L R F D
S O L U T I O N

S O L U T I O N

A S D
S O L U T I O N

A N S W E R
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W12: W12 × 58,

W14: W14 × 61,

Note that the strength is not proportional to the weight (which is a function of the
cross-sectional area).

Use a W10 × 54.

Pn

cΩ
= 195 kips

Pn

cΩ
= 194 kips

134 Chapter 4 Compression Members

For shapes not in the column load tables, a trial-and-error approach must be used. The
general procedure is to assume a shape and then compute its strength. If the strength
is too small (unsafe) or too large (uneconomical), another trial must be made. A sys-
tematic approach to making the trial selection is as follows:

1. Assume a value for the critical buckling stress Fcr. Examination of AISC
Equations E3-2 and E3-3 shows that the theoretically maximum value of Fcr
is the yield stress Fy.

2. Determine the required area. For LRFD,

For ASD,

3. Select a shape that satisfies the area requirement.
4. Compute Fcr and the strength for the trial shape.
5. Revise if necessary. If the available strength is very close to the required value,

the next tabulated size can be tried. Otherwise, repeat the entire procedure,
using the value of Fcr found for the current trial shape as a value for Step 1.

6. Check local stability (check the width-to-thickness ratios). Revise if
necessary.
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4.6 Design 135

E X A M P L E  4 . 8

Select a W18 shape of A992 steel that can resist a service dead load of 100 kips
and a service live load of 300 kips. The effective length KL is 26 feet.

Pu = 1.2D + 1.6L = 1.2(100) + 1.6(300) = 600 kips
Try Fcr = 33 ksi (an arbitrary choice of two-thirds Fy):

Try a W18 × 71:

Because the initial estimate of Fcr was so far off, assume a value about halfway
between 33 and 7.455 ksi. Try Fcr = 20 ksi.

Try a W18 × 119:

Ag = 35.1 in.2 > 33.3 in.2 (OK)
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This is very close, so try the next larger size.

Try a W18 × 130:

This shape is not slender (there is no footnote in the dimensions and properties table
to indicate that it is), so local buckling does not have to be investigated.

Use a W18 × 130.

The ASD solution procedure is essentially the same as for LRFD, and the same trial
values of Fcr will be used here.

Pa = D + L = 100 + 300 = 400 kips

Try Fcr = 33 ksi (an arbitrary choice of two-thirds Fy):

Try a W18 × 71:
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Because the initial estimate of Fcr was so far off, assume a value about halfway between
33 and 7.455 ksi. Try Fcr = 20 ksi.

Try a W18 × 119:

This is very close, so try the next larger size.
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Try a W18 × 130:

This shape is not slender (there is no footnote in the dimensions and properties table
to indicate that it is), so local buckling does not have to be investigated.

Use a W18 × 130.
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4.7 MORE ON EFFECTIVE LENGTH

We introduced the concept of effective length in Section 4.2, “Column Theory.” All
compression members are treated as pin-ended regardless of the actual end conditions
but with an effective length KL that may differ from the actual length. With this mod-
ification, the load capacity of compression members is a function of only the slen-
derness ratio and modulus of elasticity. For a given material, the load capacity is a
function of the slenderness ratio only.

If a compression member is supported differently with respect to each of its
principal axes, the effective length will be different for the two directions. In
Figure 4.10, a W-shape is used as a column and is braced by horizontal members in
two perpendicular directions at the top. These members prevent translation of the col-
umn in all directions, but the connections, the details of which are not shown, permit
small rotations to take place. Under these conditions, the member can be treated as
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pin-connected at the top. For the same reasons, the connection to the support at the
bottom may also be treated as a pin connection. Generally speaking, a rigid, or fixed,
condition is very difficult to achieve, and unless some special provisions are made,
ordinary connections will usually closely approximate a hinge or pin connection.
At midheight, the column is braced, but only in one direction.

Again, the connection prevents translation, but no restraint against rotation is
furnished. This brace prevents translation perpendicular to the weak axis of the cross
section but provides no restraint perpendicular to the strong axis. As shown schemat-
ically in Figure 4.10, if the member were to buckle about the major axis, the effec-
tive length would be 26 feet, whereas buckling about the minor axis would have to be
in the second buckling mode, corresponding to an effective length of 13 feet.
Because its strength decreases with increasing KL�r, a column will buckle in the
direction corresponding to the largest slenderness ratio, so KxL�rx must be compared
with KyL�ry. In Figure 4.10, the ratio 26(12)�rx must be compared with 13(12)�ry
(where rx and ry are in inches), and the larger ratio would be used for the determi-
nation of the axial compressive strength.

4.7 More on Effective Length 139

FIGURE 4.10
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E X A M P L E  4 . 9

A W12 × 58, 24 feet long, is pinned at both ends and braced in the weak direc-
tion at the third points, as shown in Figure 4.11. A992 steel is used. Determine
the available compressive strength.

KxL�rx, the larger value, controls.

From Table 4-22 from Part 4 of the Manual and with KL�r = 54.55,

fcFcr = 36.24 ksi

fcPn = fcFcrAg = 36.24(17.0) = 616 kips

Design strength = 616 kips.

From Table 4-22 with KL�r = 54.55,

Allowable strength = 410 kips.
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The available strengths given in the column load tables are based on the effec-
tive length with respect to the y-axis. A procedure for using the tables with Kx L,
however, can be developed by examining how the tabular values were obtained.
Starting with a value of KL, the strength was obtained by a procedure similar to the
following:

• KL was divided by ry to obtain KL�ry.
• Fcr was computed.
• The available strengths, fcPn for LRFD and Pn�Ωc for ASD, were computed.

Thus the tabulated strengths are based on the values of KL being equal to KyL. If the
capacity with respect to x-axis buckling is desired, the table can be entered with

and the tabulated load will be based on

The ratio rx�ry is given in the column load tables for each shape listed.

KL

r

K L r r

r

K L

ry

x x y

y

x

x

= =
� �( )

KL
K L

r r
x

x y

=
�
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E X A M P L E  4 . 1 0

The compression member shown in Figure 4.12 is pinned at both ends and sup-
ported in the weak direction at midheight. A service load of 400 kips, with equal
parts of dead and live load, must be supported. Use Fy = 50 ksi and select the light-
est W-shape.

FIGURE 4.12
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Factored load = Pu = 1.2(200) + 1.6(200) = 560 kips

Assume that the weak direction controls and enter the column load tables with 
KL = 9 feet. Beginning with the smallest shapes, the first one found that will work is
a W8 × 58 with a design strength of 634 kips.

Check the strong axis:

Enter the tables with KL = 10.34 feet. A W8 × 58 has an interpolated strength of

fcPn = 596 kips > 560 kips (OK)

Next, investigate the W10 shapes. Try a W10 × 49 with a design strength of 568 kips.

Check the strong axis:

Enter the tables with KL = 10.53 feet. A W10 × 54 is the lightest W10, with an inter-
polated design strength of 594 kips.

Continue the search and investigate a W12 × 53 (fc Pn = 611 kips for KL = 9 ft):

Determine the lightest W14. The lightest one with a possibility of working is a
W14 × 61. It is heavier than the lightest one found so far, so it will not be considered.

Use a W12 × 53.

The required load capacity is P = 400 kips. Assume that the weak direction controls
and enter the column load tables with KL = 9 feet. Beginning with the smallest shapes,
the first one found that will work is a W8 × 58 with an allowable strength of 422 kips.

Check the strong axis:
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Enter the tables with KL = 10.34 feet. A W8 × 58 has an interpolated strength of

The next lightest W8 that will work is a W8 × 67.

The interpolated allowable strength is

Next, investigate the W10 shapes. Try a W10 × 60.

The interpolated strength is

Check the W12 shapes. Try a W12 × 53 (Pn�Ωc = 407 kips for KL = 9 ft):

Find the lightest W14. The lightest one with a possibility of working is a W14 × 61.
Since it is heavier than the lightest one found so far, it will not be considered.

Use a W12 × 53.
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Whenever possible, the designer should provide extra support for the weak direc-
tion of a column. Otherwise, the member is inefficient: It has an excess of strength in
one direction. When KxL and KyL are different, KyL will control unless rx�ry is smaller
than KxL�KyL. When the two ratios are equal, the column has equal strength in both
directions. For most of the W-shapes in the column load tables, rx�ry ranges between
1.6 and 1.8, but it is as high as 3.1 for some shapes.
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E X A M P L E  4 . 1 1

The column shown in Figure 4.13 is subjected to a service dead load of 140 kips
and a service live load of 420 kips. Use A992 steel and select a W-shape.

KxL = 20 ft and maximum KyL = 8 ft. The effective length KxL will control whenever

or 

In this example,

so KxL will control if rx�ry < 2.5. Since this is true for almost every shape in the col-
umn load tables, KxL probably controls in this example.

Assume rx�ry = 1.7:
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4.7 More on Effective Length 145

Pu = 1.2D + 1.6L = 1.2(140) + 1.6(420) = 840 kips

Enter the column load tables with KL = 12 feet. There are no W8 shapes with
enough load capacity.

Try a W10 × 88 (fcPn = 940 kips):

(By interpolation, fc Pn = 955 kips.)

Check a W12 × 79:

Investigate W14 shapes. For rx�ry = 2.44 (the approximate ratio for all likely
possibilities),

For KL = 9 ft, a W14 × 74, with a capacity of 854 kips, is the lightest W14-shape.
Since 9 feet is a conservative approximation of the actual effective length, this
shape is satisfactory.

Use a W14 × 74 (lightest of the three possibilities).

Pa = D + L = 140 + 420 = 560 kips

Enter the column load tables with KL = 12 feet. There are no W8 shapes with
enough load capacity. Investigate a W10 × 88 (for KL = 12 ft, Pn�Ωc = 625 kips):
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(By interpolation, Pn�Ωc = 635 kips.)

Check a W12 × 79:

Investigate W14 shapes. Try a W14 × 74:

For KL = 8.20 ft,

Use a W14 × 74 (lightest of the three possibilities).
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For isolated columns that are not part of a continuous frame, Table C-A-7.1 in
the Commentary to Specification Appendix 7 will usually suffice. Consider, however,
the rigid frame in Figure 4.14. The columns in this frame are not independent mem-
bers but part of a continuous structure. Except for those in the lower story, the columns
are restrained at both ends by their connection to beams and other columns. This frame
is also unbraced, meaning that horizontal displacements of the frame are possible and
all columns are subject to sidesway. If Table C-A-7.1 is used for this frame, the lower-
story columns are best approximated by condition (f), and a value of K = 2 might be
used. For a column such as AB, a value of K = 1.2, corresponding to condition (c),
could be selected. A more rational procedure, however, will account for the degree
of restraint provided by connecting members.

The rotational restraint provided by the beams, or girders, at the end of a col-
umn is a function of the rotational stiffnesses of the members intersecting at the
joint. The rotational stiffness of a member is proportional to EI�L, where I is the
moment of inertia of the cross section with respect to the axis of bending. Gaylord,
Gaylord, and Stallmeyer (1992) show that the effective length factor K depends on
the ratio of column stiffness to girder stiffness at each end of the member, which
can be expressed as

(4.12)G
E I L

E I L

I L

I L
c c c

g g g

c c

g g

= ∑
∑

= ∑
∑

�
�

�
�
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where

ΣEcIc�Lc = sum of the stiffnesses of all columns at the end of the column
under consideration.

ΣEgIg�Lg = sum of the stiffnesses of all girders at the end of the column under
consideration.

Ec = Eg = E, the modulus of elasticity of structural steel.

If a very slender column is connected to girders having large cross sections, the
girders will effectively prevent rotation of the column. The ends of the column are
approximately fixed, and K is relatively small. This condition corresponds to small
values of G given by Equation 4.12. However, the ends of stiff columns connected
to flexible beams can more freely rotate and approach the pinned condition, giving
relatively large values of G and K.

The relationship between G and K has been quantified in the Jackson–Mooreland
Alignment Charts (Johnston, 1976), which are reproduced in Figures C-A-7.1 and
C-A-7.2 in the Commentary. To obtain a value of K from one of these nomograms,
first calculate the value of G at each end of the column, letting one value be GA and
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FIGURE 4.14
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the other be GB. Connect GA and GB with a straight line, and read the value of K on
the middle scale. The effective length factor obtained in this manner is with respect
to the axis of bending, which is the axis perpendicular to the plane of the frame. A
separate analysis must be made for buckling about the other axis. Normally the beam-
to-column connections in this direction will not transmit moment; sidesway is pre-
vented by bracing; and K can be taken as 1.0.

148 Chapter 4 Compression Members

FIGURE 4.15

E X A M P L E  4 . 1 2

The rigid frame shown in Figure 4.15 is unbraced. Each member is oriented so that
its web is in the plane of the frame. Determine the effective length factor Kx for
columns AB and BC.

Column AB:

For joint A,

For joint B,

From the alignment chart for sidesway uninhibited (AISC Figure C-A-7.2), with 
GA = 0.94 and GB = 0.95, Kx = 1.3 for column AB.

Column BC:

For joint B, as before,

G = 0.95
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For joint C, a pin connection, the situation is analogous to that of a very stiff
column attached to infinitely flexible girders—that is, girders of zero stiffness.
The ratio of column stiffness to girder stiffness would therefore be infinite for
a perfectly frictionless hinge. This end condition can only be approximated in
practice, so the discussion accompanying the alignment chart recommends
that G be taken as 10.0.

From the alignment chart with GA = 0.95 and GB = 10.0, Kx = 1.85 for column BC.

4.7 More on Effective Length 149

FIGURE 4.16

As pointed out in Example 4.12, for a pinned support, G should be taken as 10.0;
for a fixed support, G should be taken as 1.0. The latter support condition corresponds
to an infinitely stiff girder and a flexible column, corresponding to a theoretical value
of G = 0. The discussion accompanying the alignment chart in the Commentary rec-
ommends a value of G = 1.0 because true fixity will rarely be achieved.

Unbraced frames are able to support lateral loads because of their moment-
resisting joints. Often the frame is augmented by a bracing system of some sort;
such frames are called braced frames. The additional resistance to lateral loads can
take the form of diagonal bracing or rigid shear walls, as illustrated in Figure 4.16.
In either case, the tendency for columns to sway is blocked within a given panel,
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or bay, for the full height of the frame. This support system forms a cantilever struc-
ture that is resistant to horizontal displacements and also provides horizontal sup-
port for the other bays. Depending on the size of the structure, more than one bay
may require bracing.

A frame must resist not only the tendency to sway under the action of lateral
loads but also the tendency to buckle, or become unstable, under the action of ver-
tical loads. Bracing to stabilize a structure against vertical loading is called sta-
bility bracing. Appendix 6 of the AISC Specification, “Stability Bracing for
Columns and Beams,” covers this type of bracing. Two categories are covered: rel-
ative and nodal. With relative bracing, a brace point is restrained relative to adjacent
brace points. A relative brace is connected not only to the member to be braced but
also to other members, as with diagonal bracing. With relative bracing, both the
brace and other members contribute to stabilizing the member to be braced. Nodal
bracing provides isolated support at specific locations on the member and is not
relative to other brace points or other members. The provisions of AISC Appendix 6
give equations for the required strength and stiffness (resistance to deformation)
of stability bracing. The provisions for columns are from the Guide to Stability
Design Criteria (Galambos, 1998). The required strength and stiffness for
stability can be added directly to the requirements for bracing to resist lateral load-
ing. Stability bracing is discussed further in Chapter 5, “Beams,” and Chapter 6,
“Beam–Columns.”

Columns that are members of braced rigid frames are prevented from sidesway
and have some degree of rotational restraint at their ends. Thus they are in a category
that lies somewhere between cases (a) and (d) in Table C-A-7.1 of the Commentary,
and K is between 0.5 and 1.0. A value of 1.0 is therefore always conservative for mem-
bers of braced frames and is the value prescribed by AISC Appendix 7.2.3(a) unless
an analysis is made. Such an analysis can be made with the alignment chart for braced
frames. Use of this nomogram would result in an effective length factor somewhat less
than 1.0, and some savings could be realized.*

As with any design aid, the alignment charts should be used only under the condi-
tions for which they were derived. These conditions are discussed in Section 7.2 of the
Commentary to the Specification and are not enumerated here. Most of the conditions
will usually be approximately satisfied; if they are not, the deviation will be on the con-
servative side. One condition that usually is not satisfied is the requirement that all be-

havior be elastic. If the slenderness ratio KL�r is less than the column will

buckle inelastically, and the effective length factor obtained from the alignment
chart will be overly conservative. A large number of columns are in this category.
A convenient procedure for determining K for inelastic columns allows the align-
ment charts to be used (Yura, 1971; Disque, 1973; Geschwindner, 2010). To demon-
strate the procedure, we begin with the critical buckling load for an inelastic

4 71. ,E Fy�
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*If a frame is braced against sidesway, the beam-to-column connections need not be moment-resisting, and
the bracing system could be designed to resist all sidesway tendency. If the connections are not moment-
resisting, however, there will be no continuity between columns and girders, and the alignment chart can-
not be used. For this type of braced frame, Kx should be taken as 1.0.
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column given by Equation 4.6b. Dividing it by the cross-sectional area gives the
buckling stress:

The rotational stiffness of a column in this state would be proportional to EtIc�Lc, and
the appropriate value of G for use in the alignment chart is

Because Et is less than E, Ginelastic is less than Gelastic, and the effective length factor K
will be reduced, resulting in a more economical design. To evaluate Et�E, called the
stiffness reduction factor (denoted by tb), consider the following relationship.

From Galambos (1998), Fcr (inelastic) and Fcr (elastic) can be expressed as
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Using the notation Fcr = Fcr (inelastic) and solving for tb, we obtain

This can be written in terms of forces as 

where

Pn = nominal compressive strength = Fcr Ag

Py = compressive yield strength = Fy Ag

Substituting the required strength, a Pr , for the available strength, Pn, we have

(AISC Equation C2-2b)

where a = 1.0 for LRFD and 1.6 for ASD. The required strength is computed at the
factored load level, and the 1.6 factor is used to adjust the ASD service load level to
a factored load level. The stiffness reduction factor, tb, is also used to adjust member
stiffnesses for frame analysis. This is discussed in Chapter 6, “Beam–Columns.”
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E X A M P L E  4 . 1 3

A W10 × 54 of A992 steel is used as a column. It is subjected to a service dead load
of 100 kips and a service live load of 200 kips. If the slenderness ratio makes this
member an inelastic column, what is the stiffness reduction factor, tb?

From AISC Equation C2-2b,

tb = 0.987.
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From AISC Equation C2-2b,

tb = 0.954.
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FIGURE 4.17

If the end of a column is fixed (G = 1.0) or pinned (G = 10.0), the value of G at that
end should not be multiplied by the stiffness reduction factor. Values of the stiffness
reduction factor tb as a function of Pu�Ag and Pa�Ag are given in Table 4-21 in Part 4
of the Manual.

E X A M P L E  4 . 1 4

A rigid unbraced frame is shown in Figure 4.17. All members are oriented so that
bending is about the strong axis. Lateral support is provided at each joint by simply
connected bracing in the direction perpendicular to the frame. Determine the effec-
tive length factors with respect to each axis for member AB. The service dead load
is 35.5 kips, and the service live load is 142 kips. A992 steel is used.

A N S W E R
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Compute elastic G factors:

For joint A,

For joint B,

From the alignment chart for unbraced frames, Kx = 1.45, based on elastic behavior.
Determine whether the column behavior is elastic or inelastic.

Since

behavior is inelastic, and the inelastic K factor can be used.

The factored load is

Pu = 1.2D + 1.6L = 1.2(35.5) + 1.6(142) = 269.8 kips

Enter Table 4-21 in Part 4 of the Manual with

and obtain the stiffness reduction factor tb = 0.9877 by interpolation.
For joint A,

Ginelastic = tb × Gelastic = 0.9877(1.52) = 1.50

For joint B,

Ginelastic = 0.9877(1.36) = 1.34

From the alignment chart, Kx = 1.43. Because of the support conditions normal to the
frame, Ky can be taken as 1.0.

The applied load is

Pa = D + L = 35.5 + 142 = 177.5 kips
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Enter Table 4-21 in Part 4 of the Manual with

and obtain the stiffness reduction factor tb = 0.9703 by interpolation.
For joint A,

Ginelastic = ta × Gelastic = 0.9703(1.52) = 1.47

For joint B,

Ginelastic = 0.9703(1.36) = 1.32

From the alignment chart, Kx = 1.43. Because of the support conditions normal to the
frame, Ky can be taken as 1.0.
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A N S W E R

According to the AISC Specification, the effective length factor, K, should be
determined by a “sidesway buckling analysis” (Chapters E, C, and Appendix 7).
However, the use the alignment charts is acceptable (Nair, 2005).

4.8 TORSIONAL AND FLEXURAL-TORSIONAL
BUCKLING

When an axially loaded compression member becomes unstable overall (that is, not
locally unstable), it can buckle in one of three ways, as shown in Figure 4.18).

1. Flexural buckling. We have considered this type of buckling up to now. It is a
deflection caused by bending, or flexure, about the axis corresponding to the
largest slenderness ratio (Figure 4.18a). This is usually the minor principal axis—
the one with the smallest radius of gyration. Compression members with any
type of cross-sectional configuration can fail in this way.

2. Torsional buckling. This type of failure is caused by twisting about the lon-
gitudinal axis of the member. It can occur only with doubly symmetrical cross
sections with very slender cross-sectional elements (Figure 4.18b). Standard
hot-rolled shapes are not susceptible to torsional buckling, but members built
up from thin plate elements may be and should be investigated. The cruciform
shape shown is particularly vulnerable to this type of buckling. This shape can
be fabricated from plates as shown in the figure, or built up from four angles
placed back to back.

3. Flexural-torsional buckling. This type of failure is caused by a combination
of flexural buckling and torsional buckling. The member bends and twists
simultaneously (Figure 4.18c). This type of failure can occur only with
unsymmetrical cross sections, both those with one axis of symmetry—such as
channels, structural tees, double-angle shapes, and equal-leg single angles—
and those with no axis of symmetry, such as unequal-leg single angles.
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The AISC Specification requires an analysis of torsional or flexural-torsional
buckling when appropriate. Section E4(a) of the Specification covers double-angle
and tee-shaped members, and Section E4(b) provides a more general approach that
can be used for other shapes. We discuss the general approach first. It is based on first
determining a value of Fe, which then can be used with the flexural buckling equa-
tions, AISC Equations E3-2 and E3-3. The stress Fe can be defined as the elastic buck-
ling stress corresponding to the controlling mode of failure, whether flexural,
torsional, or flexural-torsional.

The equations for Fe given in AISC E4(b) are based on well-established theory
given in Theory of Elastic Stability (Timoshenko and Gere, 1961). Except for some
changes in notation, they are the same equations as those given in that work, with no
simplifications. For doubly symmetrical shapes (torsional buckling),

(AISC Equation E4-4)

For singly symmetrical shapes (flexural-torsional buckling),

(AISC Equation E4-5)

where y is the axis of symmetry.
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(a)
Flexural
Buckling

(b)
Torsional

Buckling (cruciform
shape shown)

(c)
Flexural-torsional

Buckling

FIGURE 4.18
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For shapes with no axis of symmetry (flexural-torsional buckling),

This last equation is a cubic; Fe is the smallest root.
In the above equations, the z-axis is the longitudinal axis. The previously unde-

fined terms in these three equations are defined as

Cw = warping constant (in.6)
Kz = effective length factor for torsional buckling, which is based on the

amount of end restraint against twisting about the longitudinal axis
G = shear modulus (ksi) = 11,200 ksi for structural steel
J = torsional constant (equal to the polar moment of inertia only for

circular cross sections) (in.4)

(AISC Equation E4-7)

(AISC Equation E4-8)

where y is the axis of symmetry for singly symmetrical shapes.

(AISC Equation E4-9)

(AISC Equation E4-10)

where z is the longitudinal axis and x0, y0 are the coordinates of the shear center
of the cross section with respect to the centroid (in inches). The shear center is
the point on the cross section through which a transverse load on a beam must
pass if the member is to bend without twisting.

(AISC Equation E4-11)

Values of the constants used in the equations for Fe can be found in the dimensions
and properties tables in Part 1 of the Manual. Table 4.1 shows which constants are given
for various types of shapes. Table 4.1 shows that the Manual does not give the constants

and H for tees, although they are given on the Companion CD. They are easily
computed, however, if x0 and y0 are known. Since x0 and y0 are the coordinates of the
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shear center with respect to the centroid of the cross section, the location of the shear
center must be known. For a tee shape, it is located at the intersection of the centerlines
of the flange and the stem. Example 4.15 illustrates the computation of and H.

The need for a torsional buckling analysis of a doubly symmetrical shape will be
rare. Similarly, shapes with no axis of symmetry are rarely used for compression
members, and flexural-torsional buckling analysis of these types of members will
seldom, if ever, need to be done. For these reasons, we limit further consideration to
flexural-torsional buckling of shapes with one axis of symmetry. Furthermore, the
most commonly used of these shapes, the double angle, is a built-up shape, and we
postpone consideration of it until Section 4.9.

For singly symmetrical shapes, the flexural-torsional buckling stress Fe is found
from AISC Equation E4-5. In this equation, y is defined as the axis of symmetry
(regardless of the orientation of the member), and flexural-torsional buckling will
take place only about this axis (flexural buckling about this axis will not occur). The
x-axis (the axis of no symmetry) is subject only to flexural buckling. Therefore, for
singly symmetrical shapes, there are two possibilities for the strength: either flexural-
torsional buckling about the y-axis (the axis of symmetry) or flexural buckling about
the x-axis (Timoshenko and Gere, 1961 and Zahn and Iwankiw, 1989). To determine
which one controls, compute the strength corresponding to each axis and use the
smaller value.

The procedure for flexural-torsional buckling analysis of double angles and
tees given in AISC Section E4(a) is a modification of the procedure given in 
AISC E4(b). There is also some notational change: Fe becomes Fcr, Fey becomes
Fcry, and Fez becomes Fcrz.

To obtain Fcrz, we can drop the first term of AISC Equation E4-11 to get

(AISC Equation E4-3) 

This approximation is acceptable because for double angles and tees, the first term is
negligible compared to the second term.

The nominal strength can then be computed as

Pn = FcrAg (AISC Equation E4-1) 
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Shape Constants

W, M, S, HP, WT, MT, ST J, Cw (In addition, the Manual Companion CD gives
values of , and H for WT, MT, and ST shapes)

C J, Cw, , H

MC, Angles J, Cw, , (In addition, the Manual Companion CD
gives values of H for MC and angle shapes.)

Double Angles , H (J and Cw are double the values given for
single angles.)
r0

r0

r0

r0

TABLE 4.1
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where

(AISC Equation E4-2)

All other terms from Section E4(b) remain unchanged. This procedure, to be used
with double angles and tees only, is more accurate than the procedure given in E4(b).
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E X A M P L E  4 . 1 5

Compute the compressive strength of a WT12 × 81 of A992 steel. The effective length
with respect to the x-axis is 25 feet 6 inches, the effective length with respect to the 
y-axis is 20 feet, and the effective length with respect to the z-axis is 20 feet.

Because this shape is a nonslender WT, we use the approach of AISC E4(a). First,
compute the flexural buckling strength for the x-axis (the axis of no symmetry):

Since AISC Equation E3-2 applies:

Fcr = 0.658(Fy�Fe) Fy = 0.658(50/37.44) (50) = 28.59 ksi

The nominal strength is

Pn = Fcr Ag = 28.59(23.9) = 683.3 kips

Compute the flexural-torsional buckling strength about the y-axis (the axis of
symmetry):

Compute Fcry using AISC E3:

From AISC Equation E3-4,
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Since 

Fcry = 0.658(Fy�Fe) Fy = 0.658(50/46.22)(50) = 31.79 ksi

Because the shear center of a tee is located at the intersection of the centerlines of
the flange and the stem,

Pn = Fcr Ag = 30.63(23.9) = 732.1 kips

The flexural buckling strength controls, and the nominal strength is 683.3 kips.

For LRFD, the design strength is fcPn = 0.90(683.3) = 615 kips.

For ASD, the allowable stress is Fa = 0.6Fcr = 0.6(28.59) = 17. 15 ksi, and the allowable
strength is Fa Ag = 17.15(23.9) = 410 kips.
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A N S W E R

E X A M P L E  4 . 1 6

Compute the compressive strength of a C15 × 50 of A36 steel. The effective lengths
with respect to the x, y, and z axes are each 13 feet.

AISC E4(b) must be used, because this shape is nonslender and is neither a double-
angle shape nor a tee shape. Check the flexural buckling strength about the y-axis (this
is the axis of no symmetry for a channel):

S O L U T I O N
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Since AISC Equation E3-2 applies:

Fcr = 0.877Fe = 0.877(8.805) = 7.722 ksi

The nominal strength is

Pn = Fcr Ag = 7.722(14.7) = 113.5 kips

Compute the flexural-torsional buckling strength about the x-axis (this is the axis of
symmetry for a channel):

Since

use AISC Equation E3-2:

Fcr = 0.658(Fy�Fe)Fy = 0.658(36�78.46)(36) = 29.71 ksi

The nominal strength is

Pn = Fcr Ag = 29.71(14.7) = 436.7 kips

The flexural buckling strength controls, and the nominal strength is 113.5 kips.
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For LRFD, the design strength is fcPn = 0.90(113.5) = 102 kips.

For ASD, the allowable stress is Fa = 0.6Fcr = 0.6(7.722) = 4. 633 ksi, and the allowable
strength is FaAg = 4.633(14.7) = 68.1 kips.

162 Chapter 4 Compression Members

The procedure used in Example 4.15, which is based on AISC Specification
E4(a), should always be used for double angles and tees. In practice, however, the
strength of most double angles and tees can be found in the column load tables. These
tables give two sets of values of the available strength, one based on flexural buck-
ling about the x-axis and one based on flexural-torsional buckling about the y axis.
The flexural-torsional buckling strengths are based on the procedure of AISC E4(a).

Available compressive strength tables are also provided for single-angle members.
The values of strength in these tables are not based on flexural-torsional buckling
theory, but on the provisions of AISC E5.

When using the column load tables for unsymmetrical shapes, there is no need to
account for slender compression elements, because that has already been done. If an
analysis is being done for a member not in the column load tables, then any element
slenderness must be accounted for.

4.9 BUILT-UP MEMBERS

If the cross-sectional properties of a built-up compression member are known, its
analysis is the same as for any other compression member, provided the component
parts of the cross section are properly connected. AISC E6 contains many details re-
lated to this connection, with separate requirements for members composed of two or
more rolled shapes and for members composed of plates or a combination of plates
and shapes. Before considering the connection problem, we will review the compu-
tation of cross-sectional properties of built-up shapes.

The design strength of a built-up compression member is a function of the slen-
derness ratio KL�r. Hence the principal axes and the corresponding radii of gyration
about these axes must be determined. For homogeneous cross sections, the principal
axes coincide with the centroidal axes. The procedure is illustrated in Example 4.17.
The components of the cross section are assumed to be properly connected.

A N S W E R

E X A M P L E  4 . 1 7

The column shown in Figure 4.19 is fabricated by welding a 3⁄8-inch by 4-inch cover
plate to the flange of a W18 × 65. Steel with Fy = 50 ksi is used for both components.
The effective length is 15 feet with respect to both axes. Assume that the components
are connected in such a way that the member is fully effective and compute the
strength based on flexural buckling.
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4.9 Built-Up Members 163

With the addition of the cover plate, the shape is slightly unsymmetrical, but the
flexural-torsional effects will be negligible.

The vertical axis of symmetry is one of the principal axes, and its location
need not be computed. The horizontal principal axis will be found by application
of the principle of moments: The sum of moments of component areas about any
axis (in this example, a horizontal axis along the top of the plate will be used)
must equal the moment of the total area. We use Table 4.2 to keep track of the
computations.

With the location of the horizontal centroidal axis known, the moment of inertia
with respect to this axis can be found by using the parallel-axis theorem:

I = Ī + Ad 2

where
Ī = moment of inertia about the centroidal axis of a component area

A = area of the component
I = moment of inertia about an axis parallel to the centroidal axis of the

component area
d = perpendicular distance between the two axes

The contributions from each component area are computed and summed to
obtain the moment of inertia of the composite area. These computations are shown in
Table 4.3, which is an expanded version of Table 4.2. The moment of inertia about
the x-axis is

Ix = 1193 in.4

y
Ay

A
= ∑

∑
= =183 2

20 60
8 893

.
.

.  in.

Component A y Ay

Plate 1.500 0.1875 0.2813
W 19.10 9.575 182.9

Σ 20.60 183.2

TABLE 4.2

65

y

x

FIGURE 4.19
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The nominal strength is

Pn = FcrAg = 21.18(20.60) = 436.3 kips

The design strength is

fcPn = 0.90(436.3) = 393 kips

From Equation 4.7, the allowable stress is

Fa = 0.6Fcr = 0.6(21.18) = 12.71 ksi

The allowable strength is

FaAg = 12.71(20.60) = 262 kips

Design compressive strength = 393 kips. Allowable compressive 
strength = 262 kips.

For the vertical axis,
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Component A y Ay Ī d Ī + Ad2

Plate 1.500 0.1875 0.2813 0.01758 8.706 113.7
W 19.10 9.575 182.9 1070 0.6820 1079

Σ 20.60 183.2 1193

TABLE 4.3

L R F D
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4.9 Built-Up Members 165

Connection Requirements for Built-Up Members
Composed of Rolled Shapes

The most common built-up shape is one that is composed of rolled shapes, namely,
the double-angle shape. This type of member will be used to illustrate the require-
ments for this category of built-up members. Figure 4.20 shows a truss compression
member connected to gusset plates at each end. To maintain the back-to-back sepa-
ration of the angles along the length, fillers (spacers) of the same thickness as the gus-
set plate are placed between the angles at equal intervals. The intervals must be small
enough that the member functions as a unit. If the member buckles about the x-axis
(flexural buckling), the connectors are not subjected to any calculated load, and the
connection problem is simply one of maintaining the relative positions of the two
components. To ensure that the built-up member acts as a unit, AISC E6.2 requires
that the slenderness of an individual component be no greater than three-fourths of
the slenderness of the built-up member; that is,

(4.14)

where
a = spacing of the connectors
ri = smallest radius of gyration of the component

Ka�ri = effective slenderness ratio of the component
KL�r = maximum slenderness ratio of the built-up member

If the member buckles about the axis of symmetry—that is, if it is subjected to
flexural-torsional buckling about the y-axis—the connectors are subjected to shearing
forces. This condition can be visualized by considering two planks used as a beam, as
shown in Figure 4.21. If the planks are unconnected, they will slip along the surface
of contact when loaded and will function as two separate beams. When connected by
bolts (or any other fasteners, such as nails), the two planks will behave as a unit, and
the resistance to slip will be provided by shear in the bolts. This behavior takes place

Ka

r

KL

ri
≤ 3

4

FIGURE 4.20
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in the double-angle shape when bending about its y-axis. If the plank beam is oriented
so that bending takes place about its other axis (the b-axis), then both planks bend in
exactly the same manner, and there is no slippage and hence no shear. This behavior
is analogous to bending about the x-axis of the double-angle shape. When the fasten-
ers are subjected to shear, a modified slenderness ratio larger than the actual value may
be required.

AISC E6 considers two categories of intermediate connectors: (1) snug-tight bolts
and (2) welds or fully-tensioned bolts. We cover these connection methods in detail in
Chapter 7, “Simple Connections.” 

When the connectors are snug-tight bolts, the modified slenderness ratio is

(AISC Equation E6-1)

where

When the connectors are fully-tensioned bolts or welds, the modified slenderness
ratio depends on the value of a�ri:

When a�ri ≤ 40, the slenderness ratio is not modified; that is,

(AISC Equation E6-2a)

When a�ri > 40, 

(AISC Equation E6-2b)

where

Ki = 0.5 for angles back-to-back

= 0.75 for channnels back-to-back

= 0.86 for all other cases
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4.9 Built-Up Members 167

The column load tables for double angles are based on the use of welds or fully tight-
ened bolts. These tables show the number of intermediate connectors required for the
given y-axis flexural-torsional buckling strength. The number of connectors needed for
the x-axis flexural buckling strength must be determined from the requirement of Equa-
tion 4.14 that the slenderness of one angle between connectors must not exceed three-
fourths of the overall slenderness of the double-angle shape.

E X A M P L E  4 . 1 8

Compute the available strength of the compression member shown in Figure 4.22.
Two angles, 5 × 3 × 1⁄2, are oriented with the long legs back-to-back (2L5 × 3 ×
1⁄2 LLBB) and separated by 3⁄8 inch. The effective length KL is 16 feet, and there are
three fully tightened intermediate connectors. A36 steel is used.

FIGURE 4.22

Compute the flexural buckling strength for the x-axis:

Since 

The nominal strength is

Pn = FcrAg = 16.55(7.50) = 124.1 kips

F Fcr
F F

y
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To determine the flexural-torsional buckling strength for the y-axis, use the modi-
fied slenderness ratio, which is based on the spacing of the connectors. The
unmodified slenderness ratio is

The spacing of the connectors is

Then, from Equation 4.14,

Compute the modified slenderness ratio, (KL�r)m:

This value should be used in place of KL�ry for the computation of Fcry:

From AISC Equation E4-3,
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The nominal strength is

Pn = FcrAg = 9.599(7.50) = 71.99 kips

Therefore the flexural-torsional buckling strength controls.

The design strength is

fcPn = 0.90(71.99) = 64.8 kips

From Equation 4.7, the allowable stress is

Fa = 0.6Fcr = 0.6(9.599) = 5.759 ksi

The allowable strength is

FaAg = 5.759(7.50) = 43.2 kips

Design compressive strength = 64.8 kips. Allowable compressive 
strength = 43.2 kips.
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Design a 14-foot-long compression member to resist a service dead load of 12 kips
and a service live load of 23 kips. Use a double-angle shape with the short legs back-
to-back, separated by 3⁄8-inch. The member will be braced at midlength against buck-
ling about the x-axis (the axis parallel to the long legs). Specify the number of
intermediate connectors needed (the midlength brace will provide one such connec-
tor). Use A36 steel.

The factored load is

Pu = 1.2D + 1.6L = 1.2(12) + 1.6(23) = 51.2 kips

From the column load tables, select 2L 31⁄2 × 3 × 1⁄4 SLBB, weighing 10.8 lb�ft. The
capacity of this shape is 53.2 kips, based on buckling about the y-axis with an

L R F D
S O L U T I O N
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effective length of 14 feet. (The strength corresponding to flexural buckling
about the x-axis is 63.1 kips, based on an effective length of 14⁄2 = 7 feet.) Note that
this shape is a slender-element cross section, but this is taken into account in the tab-
ular values.

Bending about the y-axis subjects the fasteners to shear, so a sufficient num-
ber of fasteners must be provided to account for this action. The table reveals that
three intermediate connectors are required. (This number also satisfies Equa-
tion 4.14.)

Use 2L 31⁄2 × 3 × 1⁄4 SLBB with three intermediate connectors within the 14-foot
length.

The total load is

Pa = D + L = 12 + 23 = 35 kips

From the column load tables, select 2L 31⁄4 × 3 × 1⁄4 SLBB, weighing 10.8 lb�ft.
The capacity is 35.4 kips, based on buckling about the y axis, with an effective
length of 14 feet. (The strength corresponding to flexural buckling about the
x axis is 42.0 kips, based on an effective length of 14⁄2 = 7 feet.) Note that this
shape is a slender-element section, but this is taken into account in the tabular
values.

Bending about the y axis subjects the fasteners to shear, so a sufficient num-
ber of fasteners must be provided to account for this action. The table reveals
that three intermediate connectors are required. (This number also satisfies Equa-
tion 4.14.)

Use 2L 31⁄2 × 3 × 1⁄4 SLBB with three intermediate connectors within the 14-foot
length.

170 Chapter 4 Compression Members
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Connection Requirements for Built-Up Members
Composed of Plates or Both Plates and Shapes

When a built-up member consists of two or more rolled shapes separated by a
substantial distance, plates must be used to connect the shapes. AISC E6 contains
many details regarding the connection requirements and the proportioning of the
plates. Additional connection requirements are given for other built-up compression
members composed of plates or plates and shapes.
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Problems
AISC Requirements

4.3-1 Use AISC Equation E3-2 or E3-3 and determine the nominal axial compressive
strength for the following cases:

a. L = 15 ft

b. L = 20 ft

FIGURE P4.3-1

4.3-2 Compute the nominal axial compressive strength of the member shown in Figure P4.3-2.
Use AISC Equation E3-2 or E3-3.

FIGURE P4.3-2

4.3-3 Compute the nominal compressive strength of the member shown in Figure P4.3-3.
Use AISC Equation E3-2 or E3-3.

Pipe 6 ×-strong15�

W10 × 33
A992 steel

L

Problems 171
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FIGURE P4.3-3

4.3-4 Determine the available strength of the compression member shown in Figure P4.3-4,
in each of the following ways:

a. Use AISC Equation E3-2 or E3-3. Compute both the design strength for LRFD and
the allowable strength for ASD.

b. Use Table 4-22 from Part 4 of the Manual. Compute both the design strength for
LRFD and the allowable strength for ASD.

FIGURE P4.3-4

4.3-5 A W18 × 119 is used as a compression member with one end fixed and the other
end fixed against rotation but free to translate. The length is 12 feet. If A992 steel
is used, what is the available compressive strength?

a. Use AISC Equation E3-2 or E3-3. Compute both the design strength for LRFD and
the allowable strength for ASD.

b. Use Table 4-22 from Part 4 of the Manual. Compute both the design strength for
LRFD and the allowable strength for ASD.

4.3-6 Does the column shown in Figure P4.3-6 have enough available strength to support
the given service loads?

a. Use LRFD.

b. Use ASD.

HSS 8 × 8 × 1/4

ASTM A500, Grade B steel
(Fy = 46 ksi)

15�

HP 12 × 53
A572 Grade 50

16�
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FIGURE P4.3-6

4.3-7 Determine whether the compression member shown in Figure P4.3-7 is adequate to
support the given service loads.

a. Use LRFD.

b. Use ASD.

FIGURE P4.3-7

4.3-8 Determine the maximum axial compressive service load that can be supported if the
live load is twice as large as the dead load. Use AISC Equation E3-2 or E3-3.

a. Use LRFD.

b. Use ASD.

W12 × 79
A992 steel

D = 560 kips
L = 68 kips

20�

W14 × 90
A992 steel

13�

D = 180k

L = 540k
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FIGURE P4.3-8

Local Stability

4.4-1 An HSS10 × 8 × 3⁄16 is used as a compression member with one end pinned and the
other end fixed against rotation but free to translate. The length is 12 feet. Compute
the nominal compressive strength for A500 Grade B steel (Fy = 46 ksi). Note that this
is a slender-element compression member, and the equations of AISC Section E7 must
be used.

4.4-2 A W21 × 101 is used as a compression member with one end fixed and the other end
free. The length is 10 feet. What is the nominal compressive strength if Fy = 50 ksi?
Note that this is a slender-element compression member, and the equations of AISC
Section E7 must be used.

Design

4.6-1 a. Select a W12 of A992 steel. Use the column load tables.

1. Use LRFD.

2. Use ASD.

b. Select a W18 of A992 steel. Use the trial-and-error approach covered in Section 4.6.

1. Use LRFD.

2. Use ASD.

HSS 6.625 × 0.250
ASTM A500 Grade B (Fy = 42 ksi)

10�
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FIGURE P4.6-1

4.6-2 A 15-foot long column is pinned at the bottom and fixed against rotation but free to
translate at the top. It must support a service dead load of 100 kips and a service live
load of 100 kips.

a. Select a W12 of A992 steel. Use the column load tables.

1. Use LRFD.

2. Use ASD.

b. Select a W16 of A992 steel. Use the trial-and-error approach covered in Section 4.6.

1. Use LRFD.

2. Use ASD.

4.6-3 Select a square HSS (Fy = 46 ksi).

a. Use LRFD.

b. Use ASD.

FIGURE P4.6-3

4.6-4 Select a steel pipe. Specify whether your selection is Standard, Extra-Strong, or
Double-Extra Strong.

a. Use LRFD.

b. Use ASD.

D = 100k

L = 300k

12′

D = 265k

L = 130k

18′
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FIGURE P4.6-4

4.6-5 Select an HP-shape for the conditions of Problem 4.6-4. Use Fy = 50 ksi.

a. Use LRFD.

b. Use ASD.

4.6-6 Select a rectangular (not square) HSS for the conditions of Problem 4.6-3.

a. Use LRFD.

b. Use ASD.

4.6-7 For the conditions shown in Figure P4.6-7, use LRFD and do the following.

a. Select a W10 of A992 steel.

b. Select a square HSS.

c. Select a rectangular HSS.

d. Select a round HSS.

FIGURE P4.6-7

D = 100k

L = 250k

16�

D = 122k

L = 242k

15�
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4.6-8 Same as Problem 4.6-7, but use ASD.

4.6-9 For the conditions shown in Figure P4.6-7, use LRFD and select the lightest W21
shape of A992 steel. Do not exclude slender shapes from consideration.

Effective Length

4.7-1 A W18 × 97 with Fy = 60 ksi is used as a compression member. The length is 13 feet.
Compute the nominal strength for Kx = 2.2 and Ky = 1.0.

4.7-2 An HSS 10 × 6 × 5⁄16 with Fy = 46 ksi is used as a column. The length is 16 feet. Both
ends are pinned, and there is support against weak axis buckling at a point 6 feet from
the top. Determine

a. the design strength for LRFD.

b. the allowable stress for ASD.

FIGURE P4.7-2

4.7-3 A W12 × 65 of A572 Grade 60 steel is used as a compression member. It is 26 feet
long, pinned at each end, and has additional support in the weak direction at a point
12 feet from the top. Can this member resist a service dead load of 180 kips and a
service live load of 320 kips?

a. Use LRFD.

b. Use ASD.

4.7-4 Use A992 steel and select a W12 shape for an axially loaded column to meet the fol-
lowing specifications: The length is 24 feet, both ends are pinned, and there is brac-
ing in the weak direction at a point 10 feet from the top. The service dead load is
142 kips, and the service live load is 356 kips.

a. Use LRFD.

b. Use ASD.

6�

10�

16�

y-axis x-axis
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4.7-5 Use A992 steel and select a W shape.

a. Use LRFD.

b. Use ASD.

FIGURE P4.7-5

4.7-6 Select a square HSS for use as a 15-foot-long compression member that must resist
a service dead load of 35 kips and a service live load of 80 kips. The member will be
pinned at each end, with additional support in the weak direction at midheight. Use
A500 Grade B steel (Fy = 46 ksi).

a. Use LRFD.

b. Use ASD.

4.7-7 Select the best rectangular (not square) HSS for a column to support a service dead
load of 30 kips and a service live load of 90 kips. The member is 22 feet long and is
pinned at the ends. It is supported in the weak direction at a point 12 feet from the
top. Use Fy = 46 ksi.

a. Use LRFD.

b. Use ASD.

35�

10�

15�

10�

Strong axis Weak axis

D = 340 kips
L = 670 kips
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4.7-8 The frame shown in Figure P4.7-8 is unbraced, and bending is about the x-axis of the
members. All beams are W16 × 40, and all columns are W12 × 58.

a. Determine the effective length factor Kx for column AB. Do not consider the stiff-
ness reduction factor.

b. Determine the effective length factor Kx for column BC. Do not consider the stiff-
ness reduction factor.

c. If Fy = 50 ksi, is the stiffness reduction factor applicable to these columns?

FIGURE P4.7-8

4.7-9 The given frame is unbraced, and bending is about the x axis of each member.
The axial dead load supported by column AB is 155 kips, and the axial live load is
460 kips. Fy = 50 ksi. Determine Kx for member AB. Use the stiffness reduction factor
if applicable.

a. Use LRFD.

b. Use ASD.

FIGURE P4.7-9

25�

13�

13�

B

A

W18 × 50

W18 × 50

W
14

 ×
 9

9
W
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 ×

 9
0
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 ×

 9
0

20�

13�

13�

20�

13�

A

B

C

Problems 179

76004_04_ch04_p108-187.qxd  9/5/11  1:02 PM  Page 179



4.7-10 The rigid frame shown in Figure P4.7-10 is unbraced. The members are oriented so
that bending is about the strong axis. Support conditions in the direction perpendicu-
lar to the plane of the frame are such that Ky = 1.0. The beams are W16 × 57, and
the columns are W10 × 100. A992 steel is used. The axial compressive dead load is
90 kips, and the axial compressive live load is 110 kips.

a. Determine the axial compressive design strength of column AB. Use the stiffness
reduction factor if applicable.

b. Determine the allowable axial compressive strength of column AB. Use the stiff-
ness reduction factor if applicable.

FIGURE P4.7-10

4.7-11 The frame shown in Figure P4.7-11 is unbraced against sidesway. Relative moments
of inertia of the members have been assumed for preliminary design purposes. Use
the alignment chart and determine Kx for members AB, BC, DE, and EF.

FIGURE P4.7-11

I I I I

I I I I

2I 2I 2I

3I 3I 3I

A

B

C

F

E

D

30� 30� 30�

13�

13�

15′

20′18′

B

A
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4.7-12 An unbraced frame is shown in Figure P4.7-12. Use LRFD and the alignment chart
to check the adequacy of the following columns for Fy = 50 ksi. Use the stiffness
reduction factor if applicable. Use Ky = 1.0.

a. Column AB, Pu = 750 kips.

b. Column MN, Pu = 1000 kips.

c. Column BC, Pu = 600 kips.

d. Column LM, Pu = 1200 kips.

e. Column FG, Pu = 240 kips.

f. Column HI, Pu = 480 kips.

FIGURE P4.7-12

4.7-13 The rigid frame shown in Figure P4.7-13 is unbraced in the plane of the frame. In the
direction perpendicular to the frame, the frame is braced at the joints. The connections
at these points of bracing are simple (moment-free) connections. Roof girders are
W14 × 26, and floor girders are W16 × 40. Member BC is a W12 × 50. Use A992 steel
and select a W-shape for AB. Assume that the controlling load combination causes
no moment in AB. The service dead load is 48 kips and the service live load is 72 kips.
Use LRFD.

W16 × 26 W16 × 26 W16 × 26

W18 × 40 W18 × 40 W18 × 40
W10 × 49 columns

W18 × 40 W18 × 40 W18 × 40

W18 × 40 W18 × 40 W18 × 40

W18 × 46 W18 × 46 W18 × 46

W18 × 46 W18 × 46 W18 × 46

3 @ 30′-0′′ = 90′-0′′

6 
@

 1
3′

-0
′′

A

B

C

N

M

L

D K

E J

F I

G H

W12 × 79 columns

W12 × 96 columns
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FIGURE P4.7-13

Torsional and Flexural-Torsional Buckling

4.8-1 Use A992 steel and compute the nominal compressive strength of a WT10.5 × 66 with
an effective length of 16 feet with respect to each axis. Use the AISC Specification
equations. Do not use the column load tables.

4.8-2 Use A36 steel and compute the nominal strength of the column shown in Figure P4.8-2.
The member ends are fixed in all directions (x, y, and z).

FIGURE P4.8-2

C12 × 20.710�

B

A

C

14′

14′

18′

18′

18′

4 @ 20′
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4.8-3 Select a WT section for the compression member shown in Figure P4.8-3. The load
is the total service load, with a live-to-dead load ratio of 2:1. Use Fy = 50 ksi.

a. Use LRFD.

b. Use ASD.

FIGURE P4.8-3

4.8-4 Select an American Standard Channel for the compression member shown in 
Figure P4.8-4. Use A572 Grade 50 steel. The member ends are fixed in all directions
(x, y, and z).

a. Use LRFD.

b. Use ASD.

FIGURE P4.8-4

Built-Up Members

4.9-1  Verify the value of ry given in Part 1 of the Manual for the double-angle shape 2L4
× 31⁄2 × 1⁄4 SLBB. The angles will be connected to a 3⁄8 -inch-thick gusset plate.

4.9-2  Verify the values of y2, rx , and ry given in Part 1 of the Manual for the combination
shape consisting of an S12 × 31.8 with a C8 × 11.5 cap channel. 

D = 30k

L = 70k

10�

20�

180k
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4.9-3  A column is built up from four 5 × 5 × 3⁄4 angle shapes as shown in Figure P4.9-3.
The plates are not continuous but are spaced at intervals along the column length and
function to maintain the separation of the angles. They do not contribute to the cross-
sectional properties. Compute rx and ry.

FIGURE P4.9-3

4.9-4  An unsymmetrical compression member consists of a 1⁄2 × 12 top flange, a 1⁄2 × 6 bot-
tom flange, and a 5⁄16 × 16 web (the shape is symmetrical about an axis parallel to the
web depth). Compute the radius of gyration about each of the principal axes.

4.9-5 Compute the nominal axial compressive strength based on flexural buckling (no
torsional or flexural-torsional buckling). Assume that the cross-sectional elements
are connected such that the built-up shape is fully effective. ASTM A242 steel is
used.

FIGURE P4.9-5

40�
40��

36��

All plates 4�� thick

5��

5��1�-3��

Section
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4.9-6  Compute the axial compressive design strength based on flexural buckling (no tor-
sional or flexural-torsional buckling). Assume that the cross-sectional elements are
connected such that the built-up shape is fully effective.

FIGURE P4.9-6

4.9-7  A compression member is made up of two channels, 2C5 × 9, placed back-to-back
and separated by 3⁄8 inch (for connection to a 3⁄8-inch-thick gusset plate). The two
components are connected along their length in such a way as to maintain the 3⁄8-inch
separation. The effective length with respect to each axis is 14 feet, and A242 Grade
50 steel is used. 

a. Verify the value of ry given in the properties table in the Manual.

b. Neglect flexural-torsional buckling and compute the allowable axial compressive
strength.

4.9-8  In order to reinforce a column in an existing structure, two channels are welded to the
column as shown in Figure P4.9-8. Fy = 50 ksi for both the column and the channels.
The effective length with respect to each axis is 16 feet. What is the available axial
compressive strength? What is the percent increase in strength?

a. Use LRFD.

b. Use ASD.

FIGURE P4.9-8

W12 × 50

C6 × 13

A36

Section

15′
2′′

2′′ 2′′

1′′

1′′
5′′
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4.9-9  A compression member is built up from a W14 × 90 and a W10 × 49, both of A992 steel.

a. Compute rx and ry for the built-up shape.

b. Neglect flexural-torsional buckling and compute the available strength for 
KxL = KyL = 30 feet.

i. Use LRFD.
ii. Use ASD.

FIGURE P4.9-9

4.9-10 Compute the design strength for LRFD and the allowable strength for ASD for the fol-
lowing double-angle shape: 2L8 × 4 × 3⁄4, long legs 3⁄8-in. back-to-back, Fy = 36 ksi;
KL is 20 feet for all axes, and there are two intermediate connectors. Use the proce-
dure of AISC Section E4(a). Do not use the column load tables. Compare the flexural
and the flexural-torsional buckling strengths.

4.9-11 For the conditions shown in Figure P4.9-11, select a double-angle section (3⁄8-in. gus-
set plate connection). Use A36 steel. Specify the number of intermediate connectors.

a. Use LRFD.

b. Use ASD.

FIGURE P4.9-11

D = 90k

L = 260k

15′-4′′

7′′

W14 × 90

W10 × 49
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4.9-12 Use ASD and select a WT section for the compression member shown in Figure P4.9-12.
The load shown is the total service load, consisting of dead and live loads. Use
A992 steel.

FIGURE P4.9-12

4.9-13 Use ASD and select a double-angle shape for the top chord of the truss of Prob-
lem 3.8-2. Use Kx = Ky = 1.0. Assume 3⁄8-inch gusset plates, and use A36 steel.

21′

280k
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