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a-  Finding Limits of Integration in polar form 
 

The procedure for finding limits of integration in rectangular coordinates also works for 
 

polar coordinates. To evaluate  over a region R in polar coordinates, integrating 

first with respect to r and then with respect to , take the following steps. 
 
 

1- Sketch. Sketch the region and label the bounding curves. 
 

2- Find the r-limits of integration. Imagine a ray L from the origin cutting through R in 

the direction of increasing r. Mark the r-values where L enters and leaves R. These 

are the r-limits of integration. They usually depend on the angle u that L makes 

with the positive x-axis. 
 

3- Find the -limits of integration. Find the smallest and largest -values that bound R. 

These are the -limits of integration (see figure 6). The polar iterated integral is 
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Figure 2 
 
 

 

b- Change of variables       
        

Let ( ) ( ) then the formula for a change of variables in double 

integrals from x, y to u, v is       
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that is, the integrand is expressed in terms of u and v, and dx, dy is replaced by du dv 

times 
 

the absolute value of the Jacobian.  
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For double integral transformation from the cartesian coordinates to polar coordinates 

ordinates as follows: 
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using the Jacobian matrix, we find that      
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c-  Triple integral 
 
 

If f (x, y, z) is a function defined on a closed bounded region D in space, such as the 

region occupied by a solid ball or a lump of clay, then the integral of f over D may be 

defined in the following way. 
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d- Surface area 
 

Let f (x, y) be a differentiable function. As we have seen, z=f(x, y) defines a surface in x 

y z-space. In some applications, it necessary to know the surface area of the surface above 

some region R in the xy-plane. See the figure. 
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https://math.oregonstate.edu/home/programs/undergrad/CalculusQuestStudyGuides/vcalc/multvar/multvar.html#surface

