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THREE DIMENSIONAL EQUATION
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_  THREE DIMENSION CONDUCTION

: : dl d T
=kl = O =—kd — " | k4 = |k
dx dx dx dx
. dT . dr df, dr
Q'I' = _kA'I' I Q1'+r.’1' = _kAT I kA1 R dl’
T ST
dT - al d(, dI
0. =4 —, 0 =4 — -k |-
d- T “d- odz\ T dz)
And the heat generation is G, = £dV = gdxdyd-
Where Ax=dydz, A,=dzdx, A;=dxdy
dV=dxdydz=Axdx=Aydy=Azdz
: : dE dT dT
And the change of energy content in the element is % =mC i pCd Vd_
T T T
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_ THREE DIMENSIONAL CONDUCTION
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0 -Q._, = —kAxd—T—{— kA I _ d [x{‘ﬂ" JAxdx} =i[x{£Jax¢r

dx dy dx\ dx dx\ dx

: d (. dT

-0, =—| k— |dxdyd=

Q QJ.—._GJJ; ('}{T \ ('}{T ) X 1’

) .

And 0,-0, .= 9T dxdyd-=
' U ody \ dy J

And 0 -0 .= %{k%]drdvd:

By substituting these terms in eq.(2.2), we find that
E[I{E L9 kL +E(ff§ + g bdedyds = pC 2L dvdyd-
ox\ ox ) oy\ oy ) o=\ éz ' or
5(, 0T\ of(,oT\ o(,oT) T
— | hk—|+—|hk—|+—|k— |+ g} =pC—
{@T[ a‘I‘J @1’{ Eva 5:[ E?:J g} pC(:?r

H:k\f’pC\) &)
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_  THREE DIMENSIONAL CONDUCTION

o’T o&'T o'T ¢ 16T
-+ T+ Tt ==
ox® ¢y o= k aodor
And it can reduced under specific conditions to the following forms
1- Steady state conduction (The Poisson Equation)
6'{’+@'{’+@'%’”+£:0
ox- oy om k
2- Transient, and with no heat generation (Diffusion Equation)
&'T &'T &'T 1éT
Tt Tt > —
ox~ ¢y oz eadr
3- Steady state, and with no heat generation (The Laplace Equation)
o'T oT o°T |

-+ —+—=0
ox® oy~ oz
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9 CYLINDRICAL COORDINATE

This equation can be reduced under specific conditions to the following forms
1- Steady state (Poisson Equation)

SRANEIL AN S

ror\ or) roglog) oz\oz) k

2- Transient, And No Heat Generation(The Diffusion Equation)
1a( oT\ 1 a(aT) éfer ler
?»a:{ a;J F@{agﬁJ a(&} a or

3- Steady State, And No Heat Generation(The Laplace Equation)

1@(@? 1 o(oT a[ar
ror\ or) P oglog) o-\ e
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o SPHERICAL COORDINATE

izﬁ(kﬁaT]Jr 2 }2 8 kaT ; 21. o kaT +g=pcg
or) risin*@0g\ d¢) risindoal 66 or

Volume element
dV=r®sin® de d¢ dr
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ONE-DIMENSINAL HEAT CONDUCTION EQUATION ~
HEAT CONDUCTION EQUATION IN A LARGE PLANE WALL

S’

‘Rateof Heat| [Rateof Heat| | Rateof Heat | |[Rateof Changeof )
1 Conduction ;—+ Conduction ;+1 Generation  =1TheEnergy Stored ;
atx | | atx+Ax | |Insidethe Element| | inThe Element |
Or Qx - Qx+_‘u: + Ge."em =
At
The energy change in stored or contained in the element can be found as
&Ee."em - Er+ _E - H'IC( ) !OC{'I&‘T( ™
By substituting into this equation into eq.(2.20)
. T.,
Qx - Qx+_".x + gA ‘&”T )OCA‘&”T &
-
And by dividing eq.(2.12) by (AAX) we obtain
1 Q.,H_‘u: B Qx Tf+_‘1f B T
_— 1 — LA LI
4 Ax e At
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‘ ONE-DIMENSIONAL CONDUCTION i
i EQUATION

— — lm M + g pC ]_1111 Q
A ax=0 Ax At
160 . oT
Then L IE L= pC =
A ox g=pC ot

And from Fourier equation we know that (Q = —Ak j—TJ and by substituting that in above
X

equation we get
1 ¢ oT
k4 — —
4 51‘{ E:‘TJ &= pC

It notes that the area A is constant for a plane 1ﬂu:ﬂdl. The equation of the transient heat
conduction in one-dimension a plane wall becomes
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‘ CONDUCTION EQUATION IN PLANE i
e WALL

o7 g _ 1T
'k adr
Where the thermal diffusivity (e =k/pC) is a property of the material represents how fas

heat diffuse through material. Eq.(2.25) under specified conditions can be reduced to forms.
1- Steady state: ¢/0r =0

(2.25)

(ﬁ: -y
dx k

2- Transient, with no heat generation ¢=0
o'T 1T

o' aor

3- Steady state, with no heat generation (¢/6r=0,g=0)
d’T
dx’

0
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HEAT CONDUCTION EQUATIONINA

LONG CYLINDER

Conduction Conduction Generation
atr at v+ Ar Inside the Element
_AE,,
Or 0, ~0,0 +Gopy =
AT

The change in the heat stored of the element can be expressed as
ﬁE&F&m :Er+ii.r _Er - w"‘iﬁr(};+ﬂ.r _1’;)

By substituting into eq.(2.30) we obtain
0, —C T
o QH;U- +§Aﬂr = pCHﬂ}"L

At
By dividing by AAr gives
10.,-0 -I
4 Ar tE= pC At
And taking the limitas Ar>0and Av>0
" 1 : QI'+£U' _Q — +A _Tr
ELH—I}Q AF T&= pC}ullﬂ Ar |

in The Element

Rate of Heat| |Rateof Heat Rate of Heat Rate of Change of
' — i + ' =< The Energy Stored

4
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HEAT CONDUCTION EQUATIONINA
0o LONG CYLINDER

Fourier equation give us that [Q =—Ak ‘;—T] ,and A =2mL. Substituting that in above
¥
equation we get that
10 ol oT
———|—fr—|+g=pC— 2.34
¥ c’:’r[ 6}*] g=pC or (2:34)

The one dimensional equation of transient heat conduction in a cylinder becomes:-
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HEAT CONDUCTION EQUATIONINA
e LONG CYLINDER

10 oT _
——| kr — 2.35
. 6}‘[ ar] g= pC‘ (2.35)
For constant thermal conductivity, eq.(2.35) can be reduced to
1of, ), e 1ot (2.36)
ror\ or) k aor

a is the property which known as thermal diffusivity as defined before. Eq.(2.36) under the
specified conditions reduces tD the following forms.

1- Steady state: ¢/o7 =
1 0 [r£]+£:0 (2.37)
ror k
2- Transient, with No heat generation g =0
1 ¢ T 1 oT
)
3- Steady state, with No generation heat (&/6r=0,g=0)

0 { or J =0 (239) |
or\  or | B )
St - 9\

(2.38)

ror cxé‘r
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HEAT CONDUCTION EQUATIONINA
e SPHERE

For the constant thermal conductivity, eq.(2.40) reduces to
1 0,0y ¢ 1T
— | — |+ 2=
rror\ or) k aodr
This equation can be reduced for the following conditions
1- steady State heat conduction é/6r =0

LEp) 8,

reor\ or) k

2- Transient, no heat generation g =0
Lo(pd) L
r* or or

3- Steady state, No generation heat (&/6r=0,g=0)

o ,oT
——|=0
f:?r{ @FJ

. N
u\) u\ )

Caor
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" GENERAL HEAT CONDUCTION it
~  EQUATION OF ONE-DIMENSION

2.2.4 General Heat Conduction Equation Of One-Dimension
The one-dimensional equations of transient heat conduction for a plane wall, Cylinder,
and sphere can be represented in a uniform equation as

1 o( ,, 0T oT
——|rk— |+ g=pC— 245
r”@r{ @FJ S=F 0T (243

We can take n=0 for a plane wall. And take n=1 for a cylindrical wall. Also take n=2 for a
spherical wall. For the case of a plane wall, r is always replaced by x. This equation is also

simplified for a cases of no heat generation and steady state as discussed before.

=
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_ INITIAL AND BOUNDARY CONDITIONS

* THERE ARE MANY TYPE OF
BOUNDARY CONDITIONS

* SPECIFIED TEMPERATURE BOUNDARY CONDITIONS

T(0.r)=T,=0°C and T(L.r)=T, =100°C

) 4

~ o
T.°C T(x. ) T, °C T( ) —
o4 | _ ( ) — N’
L x |
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_ INITIAL AND BOUNDARY CONDITIONS

—

e SPECIFIED HEAT FLUX BOUNDARY CONDITION

{Exmrﬁaf Heat } - {Hearﬂmrb_}’ Cﬂﬁdﬁﬂ?‘fﬂﬁ}

Supply,q W /m’ Intothe Bodyatx=10

: . ol'lx.r
That is, for example G, =100W /m* = -k (x.7)
cx evaluated
atx=0
Or, more compactly .
kaT(,T.. T) ] |::|_1_|-. N C-t’!l_ﬂlnl’.‘li-ﬂl‘l
— K — [‘j‘ﬂ =
_ I, Ty
ZA S N Yo=K e .
Corvdusctiomn II:.nl:.
"
— & a_"rgi_- —[']# Fyp
I X
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_ INITIAL AND BOUNDARY CONDITIONS

Next, We consider a heat supply into the body at the rate of |.s;r = 2000 /m- through the
boundary surface at x=L, as illustrated in Fig. 2.9. The energy balance at the surface at x=L.
[He.::rrF lowby Cmf.:fi'p:mm] | External Heat Supply.d, |

|IH#L}FF}EBL}{1H.:JM =L J |T" m- int othe Bodyat x = L.J

. dlx,r | -
That 15 -k =-g, =-20000/m
cx ) .
Note that, if the direction of ¢, 15 in the negative direction of X, s0
dlx,7)
GALSE (247)
X [
S:;::y | —p .
Conduction
flux
ol x.r) 2L
—k—— L=y at x=0 .
olx} — |
=1 | Condu cto eon
r1;nvlgf:-s.*.:': s at x=L |
-1 L. or
dlx} e Ko g, Win
S (_\!v"( >
o| L X -

— <~ ¥ \
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_ INITIAL AND BOUNDARY CONDITIONS

Insulated Boundary

, g, = 0 Insulation Tix. n 0°C
i
-ka = 0 ()| ® rf -;.
k+ 0
L
dx
0 :_kaT(X,r) 0
X |,
; :_k(?T(X,r) _0
aX x=0
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_ INITIAL AND BOUNDARY CONDITIONS

Thermal Symmetry

Zero !
1|
dT e I Temperature
R, 0 /LIX distribution
wY Anc
dx FY
I plane)
i
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