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Logic: Part IV

Algebra of Propositions

Propositions satisfy various laws which are listed in the table below. (In this table, T and F
are restricted to the truth values “True” and “False,” respectively.)

Laws of the algebra of propositions

Idempotent laws:

(laypvp=p

(Ib)pap=p

Associative laws:

Ray(pvg)vr=pvi(gvVvr)

by (pArg)Ar=parg Ar)

Commutative laws:

Ba)pvg=qVp

Distributive laws:

da)pvigAar)=(pvg) A(pVr)

by pAr(gvir)=(pAqg)V(pATr)
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Sa) pv F = h]s T =
Identity laws: ( _U P P ( _) pA P
(6a) pvT=T (6bypn F=F
Involution law: (7)——=p=p
. Ba) pv—-p=T &) pA—-p=T
Complement laws:
(92) =T = F Ob)-F =T

DeMorgan’s laws:

(10a) =~ (pvg)=—pA—g

(10b) =(p A g)=—pV g

ARGUMENTS

An argument is an assertion that a given set of propositions P1, P, . .., Pn called premises,
yields, another proposition Q, called the conclusion. Such an argument is denoted by P, P, . . .,

PiEQ

The notion of a “logical argument” or “valid argument” is formalized as follows:

Definitions

Valid Argument: An argument P1, P2, ..., PnF Q is said to be valid if Q is true whenever all

the premises P1, Py, ..., Pnare true.

Fallacy: An argument which is not valid is called fallacy.
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Examples:
(a) The following argument is valid:
p, p — q F g (Law of Detachment)

To prove this rule look at the following truth table
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Specifically , p and p —> @ are true only in case row 1, and in this case q is true .

(b) The following argument is a fallacy:

p—q, qkp (prove!).

Example: A fundamental principle of logical reasoning states:
“If p implies g and g implies r, then p implies r”

rla|riep = g A& g = ¥ = p =+
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That is, the following argument is valid: p — ¢, ¢ — r F p —r (Law of Syllogism)

This fact is verified by the above truth table which shows that the following proposition is a tautology:
[(lp>a)Al@=>1)]=>(p~>r)
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Example, consider the following argument:
Si: If aman is a bachelor, he is unhappy.
S2: If a man is unhappy, he dies young.

Conclusion: S : Bachelors die young
Here the statement S below the line denotes the conclusion of the argument, and the statements
S1and Sz above the line denote the premises. We claim that the argument Sz, S2 F S is valid. For
the argument is of the form
p—q¢gq—o>rEp—or,
where p is “He is a bachelor,” g is “He is unhappy” and r is “He dies young”.
and by “Law of Syllogism” This argument is valid.

Propositional Functions , Quantifiers

Let A be a given set. A propositional function (or an open sentence or condition) defined on
A is an expression p(x), which has the property that p(a) is true or false for each a € A.
The set A is called the domain of p(x), and the set Tp of all elements of A for which p(a) is true
Is called the truth set of p(x). In other words,
Tp={x|x €A, p(x)istrue}or Tp ={x| p(X)}
Note: Frequently ,when A is some set of numbers, the condition p(x) has the form of an
equation or inequality involving the variable x.

Examples:

Find the truth set for each propositional function p(x) defined on the set N of positive
integers.
(@) Let p(x) be “x + 2 > 7.” Its truth set is {6, 7, 8, . . .} consisting of all integers greater than 5.
(b) Let p(x) be “x + 5 < 3.” Its truth set is the empty set ¢. That is, p(x) is not true for any
integer in N.
(c) Let p(x) be “x + 5> 1.” Its truth set is N. That is, p(x) is true for every element in N.

Note: In the above examples: If p(x) is propositional function defined on a set A then p(x) could
be true for all x € A, for some x € A, or for not x € A.

Remark

Next we discuss quantifiers related to such propositional functions.
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Universal Quantifier

Let p(x) be a propositional function defined on a set A. Consider the expression

(vx € A)p(x) or xp(x)
which reads “For every X in A, p(X) is a true statement” or, simply, “For all X, p(X).”
The symbol v, which reads “for all” or “for every” is called the universal quantifier.
The above statement is equivalent to the statement

To={Xx|x€A pX)}=A
that is, that the truth set of p(x) is the entire set A. So, we have a conclusion:

If {x| x € A, p(xX)} = A then V¥x p(x) is true; otherwise, ¥x p(x) is false.
Examples
(@) The proposition (vne N)(n +4 > 3)istruesince{n|n+4>3}={1,2,3,...} =N.
(b) The proposition (vne N)(n + 2 > 8) isfalse since {n|n+2>8}={7,8,...} #N.
(c) The symbol V can be used to define the intersection of an indexed collection {Ai|i €| } of
sets Aias follows:
NAilTel)={x|Viel,xeAi}

Existential Quantifier
Let p(x) be a propositional function defined on a set A. Consider the expression
(Ix € A)p(x)or Ix, p(x),
which reads “There exists an x in A such that p(x) is a true statement” or, simply, “For
some X, p(x).”
The symbol 3, which reads “there exists” or “for some” or “for at least one” is called the
existential quantifier. Above statement is equivalent to the statement

To={x|x € A, p(X)}#¢.
I.e., that the truth set of p(x) is not empty. Accordingly, 3 x p(x), that is, p(x) preceded by the

quantifier 3, does have a truth value. Specifically:
If {x| p(X)} #¢ then I x p(x) is true; otherwise, I x p(x) is false.

Examples

(@) The proposition (In € N)(n+4 <7)istruesince {n|n+4<7}={1, 2} #¢.

(b) The proposition (In € N)(n+6 <4)isfalsesince{n|n+6<4}=¢.

(c) The symbol 3 can be used to define the union of an indexed collection {Ai|i € |} of sets
Ai as follows:

UAlie N={x|3 ie I,xe A}.
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Negation of Quantified Statements

Consider the statement: “All math students are male.” Its negation reads:
“It is not the case that all math students are male” or, equivalently, “There exists at least one
math students who is a female (not male)”
Symbolically, using M to denote the set of math students, the above can be written as

- (Vx € M) (x is male) = (3 x € M) (x is not male)
or, when p(x) denotes “X is male,”
—(Vx EM) p(x) =@ x €M) p(X)

Or ~vxp()=3ax— p(X).
The above is true for any proposition p(x). That is:

Theorem (DeMorgan):
(@) ~(vxeAPp(x) =3 x €A)7p(X)
That is
(1) Itis not true that for alla € A, p (a) is true.
(2) There exists an a € A such that p (a) is false.
(b) ~(Ix € Aplx) = (vx € A)p(X).

That is
(1) Itis not true that for some a € A, p (a) is true.
(2) Forall ae A, p(a)is false

Example :
(a) The following statements are negatives of each other:

“For all positive integers n we have n + 2 greater than 8”

“There exists a positive integer n such that n + 2 not greater than 8”
(b) The following statements are also negatives of each other:

“There exists a (living) person who is 150 years old”

“Every living person is not 150 years old”.



JsY) Jadll - 35 fAla ) TR
Aadaiiall sl ) /) jaall o slall 208
ASAl) Aplal) Aalaiy) UL and

Remark:

The expression — p(x) has the obvious meaning:
“The statement —p(a) is true when p(a) is false, and vice versa”

Previously, = was used as an operation on statements; here — is used as an operation on
propositional functions.
Similarly, p(x) A q(x), read “p(x) and q(x),” is defined by:
“The statement p(a) A g(a) is true when p(a) and q(a) are true”
Similarly, p(x) v q(x), read “p(x) or q(x),” is defined by:
“The statement p(a) V q(a) is true when p(a) or g(a) is true”

Thus, in terms of truth sets:
(i) = p(x) is the complement of p(x).
(i1) p(x) A q(x) is the intersection of p(x) and q(x).

(i) p(x) v q(x) is the union of p(x) and q(x).



