

Problem: Water flows from point A to points D and E as shown. Some of the flow parameters

are known, as shown in the table. Determine the unknown parameters.

Section	Diameter (mm)	Flow Rate (m³/s)	Velocity (m/s)
AB	300	?	?
BC	600	?	1.2
CD	?	$Q_3 = 2Q_4$	1.4
CE	150	$Q_4 = 0.5Q_3$?

Fluid Mechanics4thLecture

Solution:

From the continuity equation for pipes we can see:

$$Q_1 = Q_2$$

And as total inflow must equal total outflow:

$$Q_I = Q_{out}$$

$$=Q_3+Q_4=Q_3+0.5Q_3=1.5Q_3$$

We must also work out the areas of the pipes, $A = \pi d^2/4$ and therefore;

$$A_1 = 0.0707 \text{ m}^3$$

$$A_2 = 0.2827 \text{ m}^3$$

$$A_4 = 0.0177 \text{ m}^3$$

Starting with our basic equation, Q = Av, we can only solve for Q_2 from the table: $Q_2 = (0.2827)(1.2) = 0.3393 \text{ m}^3/\text{s}$

We know that $Q_1 = Q_2$ and so we can now calculate Q_3 from previous:

$$Q_1 = 1.5Q_3$$

$$Q_3 = \frac{Q_1}{1.5} = \frac{0.3393}{1.5} = 0.2262 \text{ m}^3/\text{s}$$

$$Q_4 = \frac{Q_3}{2} = \frac{0.2262}{2} = 0.1131 \text{ m}^3/\text{s}$$

Thus we have all the flows. The unknown velocities are:

$$v_1 = \frac{Q_1}{A_1} = \frac{0.3393}{0.0707} = 4.8 \text{ m/s}$$

$$v_4 = \frac{Q_4}{A_4} = \frac{0.1131}{0.0177} = 6.4 \text{ m/s}$$

And lastly, the diameter of pipe CD is:

$$A_3 = \frac{Q_3}{v_3} = \frac{0.2262}{1.4} = 0.1616 \text{ m}^2$$

$$d_3 = \sqrt{\frac{4A_3}{\pi}} = 0.454 \text{ m}$$