
                                                                                                   

 

P a g e  | 1                                                                                              Study Year: 2023-2024 

Al-Mustaqbal University 
College of Science 

Intelligent Medical System Department 
 

 

  العلومكلية 
ة ـيـبـطــــة الــــمــــظـــن الانــــــــــســق

 ةـــيــــــذكـــال
 

Lecture: ( 8 ) 

(Exception handling) 
 

Subject: Object oriented programming II 
Class: Second    
Lecturer:  Dr. Maytham N. Meqdad   

 

 

 



                                                                                                   

 

P a g e  | 2                                                                                              Study Year: 2023-2024 

Al-Mustaqbal University 
College of Science 

Intelligent Medical System Department 
 

Exception handling 

 

"Exception handling" is a concept that refers to how errors and exceptions that can occur during 

computer program execution are managed. It allows you to control the flow of a program when 

different errors occur, helping to prevent program crashes and directing execution appropriately. 

In the Python programming language, it provides a straightforward and powerful way to handle 

exceptions. You can use the try and except statements to deal with exceptions. Here's how it 

works: 

1. You place the code that may potentially raise an exception inside a try block. 

2. If an exception occurs within the try block, it is caught, and the code inside the 

appropriate except block, which corresponds to the type of exception that occurred, is 

executed. 

3. You can also use the else and finally blocks to add more control over exception 

handling. 

try: 

    num = int(input("Enter a number: ")) 

    result = 10 / num 

    print("The result is:", result) 

except ZeroDivisionError: 

    print("Error: Cannot divide by zero.") 

except ValueError: 

    print("Error: Please enter a valid integer.") 

except Exception as e: 

    print("An unexpected exception occurred:", e) 

 

- In this example, the try block is used to execute code that might raise an exception, and if an 

exception occurs, it is caught and the code inside the appropriate except block is executed. This 

helps avoid program crashes and directs the flow of execution appropriately when errors occur. 

 

 

 

 

 

 



                                                                                                   

 

P a g e  | 3                                                                                              Study Year: 2023-2024 

Al-Mustaqbal University 
College of Science 

Intelligent Medical System Department 
 

- This program will demonstrate how to use exception handling to manage errors when 

taking patient information. 

class Patient: 

    def __init__(self, name, age): 

        self.name = name 

        self.age = age 

 

def get_patient_information(): 

    try: 

        name = input("Enter the patient's name: ") 

        age = int(input("Enter the patient's age: ")) 

        if age < 0: 

            raise ValueError("Age cannot be negative.") 

        return Patient(name, age) 

    except ValueError as ve: 

        print("Error:", ve) 

        return None 

 

def main(): 

    patient = get_patient_information() 

    if patient: 

        print("Patient information:") 

        print(f"Name: {patient.name}") 

        print(f"Age: {patient.age}") 

    else: 

        print("Failed to retrieve patient information.") 

 

if __name__ == "__main": 

    main() 

- In this example: 

1. We define a Patient class to represent patient information. 

2. The get_patient_information() function collects patient data, including their name 

and age. It uses exception handling to check for invalid age input (negative age) and 

raises a ValueError if necessary. 

3. The main() function calls get_patient_information() to gather patient data and then 

displays the patient's information if the input is valid. 

4. We run the main() function when the script is executed. 

This is a simple example to get you started. In a real-world medical program, you would need to 

expand on this foundation to incorporate more features and handle a wider range of exceptions, 

such as data validation, treatment plans, and medical records. 

 

 



                                                                                                   

 

P a g e  | 4                                                                                              Study Year: 2023-2024 

Al-Mustaqbal University 
College of Science 

Intelligent Medical System Department 
 

class Patient: 

    def __init__(self, name, age, diagnosis): 

        self.name = name 

        self.age = age 

        self.diagnosis = diagnosis 

 

def get_patient_information(): 

    while True: 

        try: 

            name = input("Enter the patient's name: ") 

            age = int(input("Enter the patient's age: ")) 

            diagnosis = input("Enter the patient's diagnosis: ") 

            if age < 0: 

                raise ValueError("Age cannot be negative.") 

            return Patient(name, age, diagnosis) 

        except ValueError as ve: 

            print("Error:", ve) 

            continue 

 

def main(): 

    print("Medical Record System") 

    patient = get_patient_information() 

    print("Patient information:") 

    print(f"Name: {patient.name}") 

    print(f"Age: {patient.age}") 

    print(f"Diagnosis: {patient.diagnosis}") 

 

if __name__ == "__main__": 

    main() 

Note : is used to ensure that the main() function is only called when the program is executed as 

the main file, not when it's imported as a module into another file. 

The purpose of this condition is to control the execution of the program when it's run as the main 

script. When you run a Python file directly, the code inside the if __name__ == "__main__": 

block is executed, and thus, the main() function is called. 

On the other hand, when you use this file as a module in another file, like when you import it 

using import, the code within the if __name__ == "__main__": block won't be automatically 

executed. This separation allows you to organize your code so that a part of it is only executed 

when the file is run as the main program. 

-  

-  

-  

-  

-  

-  



                                                                                                   

 

P a g e  | 5                                                                                              Study Year: 2023-2024 

Al-Mustaqbal University 
College of Science 

Intelligent Medical System Department 
 

- This program that demonstrates exception handling for handling division by zero: 

 

def divide_numbers(dividend, divisor): 

    try: 

        result = dividend / divisor 

        return result 

    except ZeroDivisionError: 

        return "Error: Division by zero is not allowed." 

 

def main(): 

    print("Division Program") 

    try: 

        dividend = float(input("Enter the dividend: ")) 

        divisor = float(input("Enter the divisor: ")) 

        result = divide_numbers(dividend, divisor) 

        print(f"Result: {result}") 

    except ValueError: 

        print("Error: Please enter valid numeric inputs.") 

 

if __name__ == "__main__": 

    main() 

In this program: 

1. We define a function divide_numbers(dividend, divisor) that takes two numbers 

and attempts to perform division. It includes a try-except block to catch the 

ZeroDivisionError that may occur if the divisor is zero. 

2. In the main() function, we prompt the user to enter the dividend and divisor, and we call 

the divide_numbers function to perform the division. We also include a try-except block 

to handle potential ValueError when converting user input to floating-point numbers. 

3. When the program is run, it checks for division by zero and handles it gracefully, as well 

as invalid input values. 

You can run this program, and it will allow you to perform division while handling exceptions 

for division by zero and invalid inputs. 

 

 

 

 

 



                                                                                                   

 

P a g e  | 6                                                                                              Study Year: 2023-2024 

Al-Mustaqbal University 
College of Science 

Intelligent Medical System Department 
 

def calculate_average(numbers): 

    try: 

        total = sum(numbers) 

        average = total / len(numbers) 

        return average 

    except ZeroDivisionError: 

        return "Error: Division by zero (empty list)." 

    except Exception as e: 

        return f"An unexpected error occurred: {e}" 

 

def main(): 

    print("Average Calculator") 

    try: 

        filename = input("Enter the name of the file with numbers: ") 

        with open(filename, 'r') as file: 

            numbers = [float(line) for line in file if line.strip()] 

            average = calculate_average(numbers) 

            if isinstance(average, float): 

                print(f"Average of numbers: {average:.2f}") 

            else: 

                print(average) 

    except FileNotFoundError: 

        print("Error: File not found.") 

    except PermissionError: 

        print("Error: Permission denied.") 

    except ValueError: 

        print("Error: Invalid number format in the file.") 

    except Exception as e: 

        print(f"An unexpected error occurred: {e}") 

 

if __name__ == "__main__": 

    main() 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                   

 

P a g e  | 7                                                                                              Study Year: 2023-2024 

Al-Mustaqbal University 
College of Science 

Intelligent Medical System Department 
 

def perform_operation(): 

    try: 

        num1 = float(input("Enter the first number: ")) 

        num2 = float(input("Enter the second number: ")) 

        operation = input("Enter the operation (+, -, *, /): ") 

         

        if operation == '+': 

            result = num1 + num2 

        elif operation == '-': 

            result = num1 - num2 

        elif operation == '*': 

            result = num1 * num2 

        elif operation == '/': 

            if num2 == 0: 

                raise ZeroDivisionError("Division by zero is not allowed.") 

            result = num1 / num2 

        else: 

            raise ValueError("Invalid operation.") 

         

        return result 

    except ValueError as ve: 

        return f"Error: {ve}" 

    except ZeroDivisionError as zde: 

        return f"Error: {zde}" 

    except Exception as e: 

        return f"An unexpected error occurred: {e}" 

 

def main(): 

    print("Basic Calculator") 

    try: 

        result = perform_operation() 

        if isinstance(result, float): 

            print(f"Result: {result}") 

        else: 

            print(result) 

    except KeyboardInterrupt: 

        print("Program terminated by user.") 

    except Exception as e: 

        print(f"An unexpected error occurred: {e}") 

 

if __name__ == "__main__": 

    main() 

 

 

 

 



                                                                                                   

 

P a g e  | 8                                                                                              Study Year: 2023-2024 

Al-Mustaqbal University 
College of Science 

Intelligent Medical System Department 
 

def calculate_urea(): 

    try: 

        creatinine = float(input("Enter creatinine level (mg/dL): ")) 

        bun = float(input("Enter blood urea nitrogen (BUN) level (mg/dL): ")) 

        urea = (bun / creatinine) * 100 

        return urea 

    except ValueError: 

        return "Error: Invalid input. Please enter numeric values." 

    except ZeroDivisionError: 

        return "Error: Division by zero is not allowed." 

    except Exception as e: 

        return f"An unexpected error occurred: {e}" 

 

def main(): 

    print("Urea Measurement Calculator") 

    try: 

        urea_level = calculate_urea() 

        if isinstance(urea_level, float): 

            print(f"Urea measurement in the blood: {urea_level:.2f} mg/dL") 

        else: 

            print(urea_level) 

    except KeyboardInterrupt: 

        print("Program terminated by user.") 

    except Exception as e: 

        print(f"An unexpected error occurred: {e}") 

 

if __name__ == "__main__": 

    main( 

import math 

 

def calculate_triangle_area(): 

    try: 

        a = float(input("Enter the length of side a: ")) 

        b = float(input("Enter the length of side b: ")) 

        c = float(input("Enter the length of side c: ")) 

         

        # Check if the sides can form a valid triangle 

        if a + b <= c or a + c <= b or b + c <= a: 

            raise ValueError("Invalid sides. Cannot form a triangle.") 

         

        # Calculate the semi-perimeter 

        s = (a + b + c) / 2 

         

        # Calculate the area using Heron's formula 

        area = math.sqrt(s * (s - a) * (s - b) * (s - c)) 

         

        return area 

    except ValueError as ve: 

        return f"Error: {ve}" 

    except Exception as e: 

        return f"An unexpected error occurred: {e}" 

 

def main(): 



                                                                                                   

 

P a g e  | 9                                                                                              Study Year: 2023-2024 

Al-Mustaqbal University 
College of Science 

Intelligent Medical System Department 
 

    print("Triangle Area Calculator") 

    try: 

        area = calculate_triangle_area() 

        if isinstance(area, float): 

            print(f"The area of the triangle is: {area:.2f} square units") 

        else: 

            print(area) 

    except KeyboardInterrupt: 

        print("Program terminated by user.") 

    except Exception as e: 

        print(f"An unexpected error occurred: {e}") 

 

if __name__ == "__main__": 

    main() 

import math 

 

def calculate_square_root(): 

    try: 

        num = float(input("Enter a non-negative number: ")) 

        if num < 0: 

            raise ValueError("Square root is not defined for negative 

numbers.") 

        square_root = math.sqrt(num) 

        return square_root 

    except ValueError as ve: 

        return f"Error: {ve}" 

    except Exception as e: 

        return f"An unexpected error occurred: {e}" 

 

def main(): 

    print("Square Root Calculator") 

    try: 

        square_root = calculate_square_root() 

        if isinstance(square_root, float): 

            print(f"The square root is: {square_root:.4f}") 

        else: 

            print(square_root) 

    except ValueError: 

        print("Error: Please enter a non-negative number.") 

    except KeyboardInterrupt: 

        print("Program terminated by the user.") 

    except Exception as e: 

        print(f"An unexpected error occurred: {e}") 

 

if __name__ == "__main__": 

    main() 

import math 

 

def calculate_circle_area(): 

    try: 

        radius = float(input("Enter the radius of the circle: ")) 

        if radius < 0: 



                                                                                                   

 

P a g e  | 10                                                                                              Study Year: 2023-2024 

Al-Mustaqbal University 
College of Science 

Intelligent Medical System Department 
 

            raise ValueError("Radius cannot be negative.") 

        area = math.pi * (radius ** 2) 

        return area 

    except ValueError as ve: 

        return f"Error: {ve}" 

    except Exception as e: 

        return f"An unexpected error occurred: {e}" 

 

def main(): 

    print("Circle Area Calculator") 

    try: 

        area = calculate_circle_area() 

        if isinstance(area, float): 

            print(f"The area of the circle is: {area:.4f} square units") 

        else: 

            print(area) 

    except ValueError: 

        print("Error: Please enter a non-negative radius.") 

    except KeyboardInterrupt: 

        print("Program terminated by the user.") 

    except Exception as e: 

        print(f"An unexpected error occurred: {e}") 

 

if __name__ == "__main__": 

    main() 

 


