ALMUSTAQBAL UNIVERSITY

College of Health and Medical Techniques

Medical Laboratories Techniques Department

Stage: First year students

Subject : Lecture 5A

Lecturer: Assistant professor Dr. SADIQ . J. BAQIR

Molality(m): The number of moles of solute per kilogram of solvent.

Example

Determine the molality of a solution prepared by dissolving 75 g of solid KNO_3 (101 g/mol) into 374 gm of water at 25°C.

Solution:

$$Molality(m) = \frac{number\ of\ moles(solute)x\ 1000}{mass\ of\ solvent(gm)}$$

No of moles(solute) =
$$\frac{wt}{M.wt}$$
 = $\frac{75 \text{ gm}}{101 \text{ g/mol}}$ = 0.743 moles

$$Molality(m) = \frac{number\ of\ moles(solute)x\ 1000}{mass\ of\ solvent(gm)} \quad = \frac{0.743\ mol\ x\ 1000}{374\ gm}$$

Molality(m) = 1.987

Mole fraction:

The number of moles of one component relative to the total number of moles of all components in the solution.

$$Mole \ fraction \ of \ component \ 1(x_1) = \frac{\text{moles of component } 1(n_1)}{\text{moles of component } 1 \ (n_1) + \text{moles of component } 2 \ (n_2)}$$

Mole fraction of component
$$2(x_2) = \frac{\text{moles of component } 1(n_2)}{\text{moles of component } 1(n_1) + \text{moles of component } 2(n_2)}$$

$$\mathbf{X}_1 + \mathbf{X}_2 = \mathbf{1}$$

$$\mathbf{X}_1 = \mathbf{1} - \mathbf{X}_2$$

$$\mathbf{X}_2 = \mathbf{1} - \mathbf{X}_1$$

$$X1 = \frac{n1}{n1 + n2}$$
 $X2 = \frac{n2}{n1 + n^2}$

Example:

Calculate the mole fraction for each of solute and solvent in a solution if the solute is (2 mole) and the solvent in (3 mole).

Solution:

$$X_1 = \frac{n_1}{n_1 + n_2} = \frac{2}{2+3} = \frac{2}{5} = 0.4$$

$$X_2 = \frac{n_2}{n_1 + n_2} = \frac{3}{2+3} = \frac{3}{5} = 0.6$$

$$X_1 + X_2 = 0.4 + 0.6 = 1$$

For 3 components mixture we have X_1 , X_2 , and X_3 Then:

$$\mathbf{X}_1 = \frac{n1}{n1+n2+n3}$$

$$X_2 = \frac{n2}{n1+n2+n3}$$

$$X_3 = \frac{n3}{n1+n2+n3}$$

Example: Calculate the mole fraction for each component in a mixture that contains 1 mole of A, 2 moles of B and 3 moles of C.

Total No of moles $n_T = \text{moles of A } (n_A) + \text{moles of B } (n_B) + \text{moles of C } (n_C)$

$$n_T = n_A + n_B + n_C$$

 $n_T = 1 + 2 + 3 = 6$ moles

$$X_A = \frac{n_A}{n_T} = \frac{1}{6} = 0.17$$

$$X_{\rm B} = \frac{n_B}{n_T} = \frac{2}{6} = 0.33$$

$$X_C = \frac{n_C}{n_T} = \frac{3}{6} = 0.5$$

$$X_T = \sum X_i = 1$$

$$\mathbf{X}_{\mathbf{T}} = \mathbf{X}_{\mathbf{A}} + \mathbf{X}_{\mathbf{B}} + \mathbf{X}_{\mathbf{C}}$$

$$X_T = 0.17 + 0.33 + 0.5 = 1$$

Exercise:

The mass of an aqueous solution that contains 7.45 g of KCl (74.5 g/mol) is 151.45 g . Calculate :

- 1. The molality of the solution.
- 2. The mole fraction of each of the solute(KCl) and solvent $(H_2O)(18$ g/mol).

P- fuctions:

$$pX = -log[X]$$

Examples:

$$pH = -log[H_3O^+]$$

$$[H_3O^+] = 10^{-pH}$$

$$pOH = -log[OH^-]$$

$$[OH^{-}] = 10^{-pOH}$$

$$pNa = -log[Na^+]$$

$$pCl = -log [Cl^-]$$

Example:

Calculate the P-value of each ion in 1.76 x $10^{\text{-3}}$ M aqueous solution of Na_3PO_4 .

Solution:

Na₃PO₄
$$\longrightarrow$$
 3Na⁺ + PO₄³⁻
1 mole 3 mole 1 mole
1.76x10⁻³ 3 (1.76x10⁻³) 1.76x10⁻³

$$[Na^+] = 3 \times 1.76 \times 10^{-3} = 5.28 \times 10^{-3} M$$

$$\mathbf{pNa}^+ = -\log[5.28 \times 10^{-3}] = 2.277$$

$$p(PO_4^{3-}) = -\log[1.76 \times 10^{-3}] = 2.754$$

Note:

in case of
$$Na_2CO_3 \rightarrow 2Na^+ + CO_3^{2-}$$
 or $K_2CO_3 \rightarrow 2K^+ + CO_3^{2-}$

$$NaCl \rightarrow Na^+ + Cl^-$$
 or $KCl \rightarrow K^+ + Cl^-$

Example:

Calculate the P-value of each ion in 1740 ppm aqueous solution of K_2SO_4 (174 g / mol).

Solution:

$$Molarity(M) = \frac{PPm}{Mwt x 1000}$$

$$Molarity(M) of \ K2SO4 \ solution = \frac{1740}{174 \ x1000} = 0.01 \ M$$

$$K_2SO_4 \rightarrow 2K^+ + SO_4^{2-}$$

$$[K^+] = 0.02 \text{ M}$$

$$pK^+ = -\log(0.02) = 1.69$$

$$[SO_4^{2-}] = 0.01 \text{ M}$$

$$pSO_4^{2-} = -\log(0.01) = 2$$