Almustaqbal University College

Medical Laboratories Techniques Department

First year students

Subject: Lecture 4A

Lecturer: Assistant professor Dr. SADIQ . J. BAQIR

Part per million (ppm):

It is a convenient way to express the concentration of the very dilute solution .

$$(1 \text{ ppm} = 1 \text{ mg / liter}) \text{ or } (1 \text{ ppm} = 1 \text{ µg /mL})$$

ppm: is a mass ratio of grams of solute to one million grams of sample or solution.

$$C_{ppm} = \frac{mass\ of\ solute(g)}{mass\ of\ solution\ (g)} \times 10^6$$

also

$$Cppm = \frac{mass \, of \, solute(mg)}{volume \, of \, solution(liter)}$$

$$\mathbf{Cppm} = \frac{wt(mg)}{V(liter)} = \frac{\frac{wt(\mu g)}{1000}}{\frac{VmL}{1000}}$$

Cppm =
$$\frac{wt(\mu g)}{VmL}$$
 ($\mu g / mL$)

$$1 g = 1000 mg$$
 , $1 mg = 1000 \mu g$, $1 g = 10^6 \mu g$

$$Cppm = \frac{wt(g)}{VmL} \times 10^6$$

Example: Prepare (500mL) of (1000 ppm) KCl aqueous solution .

solution:

Cppm =
$$\frac{wt(g)}{VmL} x \ 10^6$$
 wt $_{g} = \frac{C_{ppm} \times V_{mL}}{10^6}$ (By rearrangement)
wt $_{g} = \frac{1000 \times 500}{10^6} = 0.5 \text{ g}$

Then $0.5~g\,$ of KCl is to be dissolved in water and the volume is completed to $500~mL\,$ in a volumetric flask to get(1000~ppm) solution.

Example:

A 25 μ L serum sample was analyzed for glucose content and found to contain 26.7 μ g. Calculate the concentration of glucose in ppm and in mg/dL.

Solution:

1 mL = 1000
$$\mu L$$

V (mL) =
$$\frac{V(\mu L)}{1000}$$
 = $\frac{25(\mu L)}{1000}$ = 25x10⁻³ mL

Cppm =
$$\frac{wt(\mu g)}{VmL}$$
 = $\frac{26.7}{25 \times 10^{-3}}$ = 1068 ppm

$$1 dL = 100 mL$$

$$V(dL) = \frac{V_{mL}}{100}$$

$$V(dL) = \frac{V(mL)}{100} = \frac{25x10^{-3} mL}{100} = 25x10^{-5} dL$$

$$mg = 1000 \mu g$$

wt (mg) =
$$\frac{weight (\mu g)}{1000}$$
 = $weight (\mu g) \times 10^{-3}$

wt (mg) =
$$26.7 \times 10^{-3}$$

Concentration (mg/dL) =
$$\frac{wt(mg)}{V(dL)} = \frac{26.7 \times 10^{-3}}{25 \times 10^{-5}} = 106.8 \text{ mg/dL}$$

يمكن ان نطبق القانون التالى بشكل مباشر:

** C (mg/dL) =
$$\frac{C_{ppm}}{10}$$

Then
$$C_{(mg/dL)} = \frac{1068}{10} = 106.8 \text{ mg/dL}$$

Relationship of ppm with Molarity(M) and Normality (N)

Molarity(M) =
$$\frac{PPm}{Mwt \, x 1000}$$
 یستخدم هذا القانون لتحویل الترکیز من PPm الی المولاریه (M)

Or
$$Normality(N) = \frac{PPm}{Eq.wt\,x1000}$$
 (N) التركيز النورمالي التركيز من PPm يستخدم هذا القانون لتحويل التركيز من

Example:

The maximum allowed concentration of chloride (35.5 g/mol) in drinking water supply is (2500 ppm) . express this concentration in terms of mole/liter (M)?

Solution:

$$ppm = mg/L$$

$$Molarity(M) = \frac{PPm}{Mwt \, x1000}$$

$$Molarity(M) = \frac{PPm}{Mwt x 1000} = \frac{2500}{35.5 x 1000} = 7.05 x 10^{-3} M$$

Second method:
$$2500 \text{ ppm} = \frac{2500 \text{ mg}}{\text{liter}}$$

Molarity (M) =
$$\frac{\text{wt g}}{\text{M.wt x V}_{\text{L}}} = \frac{(2500 \text{ x } 10^{-3}) \text{ g}}{35.5 \text{ x } 1} = 7.05 \text{ x } 10^{-3} \text{ M}$$

Conversions:

As
$$C_{\text{(mg/dL)}} = \frac{C_{ppm}}{10}$$

Then C _(mg/dL) =
$$\frac{Molarity(M)xM.wt\ x1000}{10}$$

** $C_{(mg/dL)} = Molarity(M) \times M.wt \times 100$

Example:

For the solution of 100 ppm of Fructose (180 g/mol) Calculate the concentration in:

a. Molarity b. mmol / L c. mg/dL

Solution:

a. Molarity(M) =
$$\frac{PPm}{Mwt \, x1000}$$
 = $\frac{100}{180 \, x1000}$ = 5.55 x10⁻⁴ M

b. mmol/L = Molarity(M) x 1000 =
$$5.55 \times 10^{-4} \times 1000 = 0.555$$

$$mg/dL = 5.55 \times 10^{-4} \times 180 \times 100 = 10$$

Or C (mg/dL) =
$$\frac{C_{ppm}}{10} = \frac{100}{10} = 10 \text{ mg/dL}$$

Exercise:

A solution was prepared by dissolving 1210 mg of $K_3Fe(CN)_6$ (329.2 g/mol) in sufficient water to give 775 mL. Calculate

- a) the molar concentration of $K_3Fe(CN)_6$. (b) pK^+ for the solution.
- c) the (w/v)% of $K_3Fe(CN)_6$ (d) the ppm concentration of $K_3Fe(CN)_6$.