


[image: ]1اسم التدريسي: م.م علياء محمد جواد
اسم المادة : تقنيات رقمية
المرحلة :الثانية
السنة الدراسية :2023_2024
Karnaugh mapاسم المحاظرة :








 (
Karnaugh
 
map
 
(Recap
 
the
 
maps)
Two-Variable
 
Map
F=
xy+x’y
Three-Variable
 
Map
)
2
[image: ][image: ]

 (
1
)

 (
Karnaugh
 
map
 
(Recap
 
t
he
 
maps)
Four
 
Variable
 
Map
)
3




 (
Karnaugh
 
map
Mapping
 
Directly
 
from
 
a
 
Truth
 
Table
Truth
 
table
 
gives
 
the
 
output
 
of
 
a
 
Boolean
 
expression
 
for
 
all
 
possible
 
input
 
variable
 
combinations.
In
 
the
 
figure
 
below,
 
you
 
can
 
see
 
that
 
the
 
Boolean
 
expression,
 
the
 
truth table, and the 
Karnaugh
 map are simply different ways to
 
represent 
a
 
logic
 
function
.
)
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 (
Karnaugh
 
map
“Don’t
 
Care”
 
Conditions
Sometimes a situation arises in which 
some input variable
 
combinations
 
are
 
not
 
allowed
.
 
For
 
example,
 
in
 
the
 
BCD
 
code
 
there
 
are
 
six
 
invalid
 
combinations:
 
1010,
 
1011,
 
1100,
 
1101,
 
1110,
 
and
 
1111.
Since these 
unallowed
 states will never occur in an application
 
involving
 
the
 
BCD
 
code,
 
they
 
can
 
be
 
treated
 
as
 
“
don’t
 
care
”
 
terms
 
with
 
respect
 
to
 
their
 
effect
 
on
 
the
 
output.
That
 
is,
 
for
 
these
 
“
don’t
 
care
”
 
terms
 
either
 
a
 
1
 
or
 
a
 
0
 
may
 
be
 
assigned
 
to
 
the
 
output;
 
it
 
really
 
does
 
not
 
matter
 
since
 
they
 
will
 
never
 
occur.
)
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 (
Karnaugh
 
map
“Don’t
 
Care”
 
Conditions
The
 
figure
 
below
 
shows
 
that
 
for
 
each
 
“
don’t
 
care
”
 
term,
 
an
 
X
 
is
 
placed
 
in
 
the cell.
 
When grouping the 1s, the 
Xs
 can be treated as 1s to get the
 
simplest
 
expression.
The truth table describes a logic
 
function that has a 1 output only when
 
the
 
BCD
 
code
 
for
 
7,
 
8,
 
or
 
9
 
is
 
present
 
on
 
the
 
inputs.
If the “
don’t cares
” 
are used as 1
s
, the
 
resulting
 
expression
 
for
 
the
 
function
 
is
 
A
 
+
 
BCD
,
 
as
 
indicated
 
in
 
part
 
(b).
If
 
the
 
“
don’t
 
cares
”
 
are
 
not
 
used
 
as
 
1s
,
 
the
 
resulting
 
expression
 
is
)
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 (
Karnaugh
 
map
Example: In a 7-segment display, each of the seven segments is
 
activated for various digits. For example, segment 
a 
is activated for
 
the digits 0, 2, 3, 5, 6, 7, 8, and 9, as illustrated in the figure below.
 
Since each digit can be represented by a BCD code, derive an SOP
 
expression
 
for
 
segment
 
a
 
using
 
the
 
variables
 
ABCD
 
and
 
then
 
minimize
 
the expression
 
using a
 
Karnaugh
 
map.
)
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 (
Karnaugh
 
map
Solution:
 
The
 
expression
 
for
 
segment
 
a
 
is
Each term in the expression represents one of the digits in which
 
segment
 
a
 
is
 
used.
 
X’s
 
(don’t
 
cares)
 
are
 
entered
 
for
 
those
 
states
 
that
 
do
 
not
 
occur
 
in
 
the
 
BCD
 
code.
)
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 (
Karnaugh
 
Map
 
POS
 
Minimization
In
 
the
 
previous
 
slides,
 
you
 
studied
 
the
 
minimization
 
of
 
an
 
SOP
 
expression
 
using
 
a 
Karnaugh
 
map.
For the next slides, we focus on 
POS 
expressions. The approaches are
 
much
 
the
 
same
 
except
 
that
 
with
 
POS
 
expressions,
 
0s
 
representing
 
the
 
standard
 
sum
 
terms
 
are
 
placed
 
on
 
the
 
Karnaugh
 
map
 
instead
 
of
 
1s.
Mapping
 
a
 
Standard
 
POS
 
Expression
)
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 (
Karnaugh
 
Map
 
POS
 
Minimization
Example:
 
Map
 
the
 
following
 
standard
 
POS
 
expression
 
on
 
a
 
Karnaugh
 
map
:
Solution:
)
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 (
Karnaugh
 
Map
 
Simplification
 
of
 
POS
 
Expressions
The
 
process
 
for
 
minimizing
 
a
 
POS
 
expression
 
is
 
that
 
you
 
group
 
0s
 
to
 
produce
 
minimum
 
sum
 
terms.
Example:
 
Use
 
a
 
Karnaugh
 
map
 
to
 
minimize
 
the
 
following
 
standard
 
POS
 
expression:
 
 
Also, derive the equivalent
 
SOP expression.
Solution:
 
The
 
combinations of
 
binary
 
values
 
of
 
the
 
expression
 
are:
 
(0
 
+
 
0
 
+
 
0)(0
 
+
 
0
 
+ 1)(0
 
+ 1
 
+
 
0)(0
 
+
 
1
 
+
 
1)(1
 
+
 
1
 
+
 
0)
-
The
 
sum
 
term
 
for
 
each
 
blue
 
group
 
is
 
shown
 
in
 
the
 
figure,
 
and
 
the
 
resulting
 
POS
 
expression
 
is
-
Grouping
 
the
 
1s
 
as
 
shown
 
by
 
the
 
gray
 
areas
 
yields
 
an
 
SOP
 
expression
note:
)[image: ][image: ][image: ]
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 (
Karnaugh
 
Map
 
Simplification
 
of
 
POS
 
Expressions
Example: Use a 
Karnaugh
 map to minimize the following 
POS
 
expression
:
 
Solution:
 
The first
 
term
 
must
 
be expanded
 
into
 
A
 
+
 
B
 
+
 
C 
+
 
D 
and
 
A
 
+
 
B
+
 
C
 
+
 
D
 
to
 
get
 
a
 
standard
 
POS
 
expression,
 
which
 
is
 
then
 
mapped;
 
and
 
the cells
 
are
 
grouped
 
as
 
shown
 
in
 
the
 
figure
 
below
Therefore
 
the
 
resulting
 
minimum
 
POS
 
expression
 
is
)[image: ]
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 (
Converting
 
Between
 
POS
 
and
 
SOP
 
Using
 
the
 
Karnaugh
 
Map
For
 
a
 
POS
 
expression,
 
all
 
the
 
cells
 
in
 
the
 
Karnaugh
 
map
 
that
 
do
 
not
 
contain
 
0s
 
contain
 
1s,
 
from
 
which
 
the
 
SOP
 
expression
 
is
 
derived.
Likewise,
 
for
 
an
 
SOP
 
expression,
 
all
 
the
 
cells
 
that
 
do
 
not
 
contain
 
1s
 
contain
 
0s, from
 
which
 
the
 
POS
 
expression
 
is
 
derived.
)
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 (
Converting
 
Between
 
POS
 
and
 
SOP
 
Using
 
the
 
Karnaugh
 
Map
Example:
 
Using
 
a
 
Karnaugh
 
map,
 
convert
 
the
 
following
 
standard
 
POS
 
expression into a 
minimum POS expression
, a standard SOP
 
expression,
 
and
 
a
 
minimum SOP
 
expression.
Solution:
)[image: ]
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 (
Example:
 
Simplifying
 
the
 
Boolean
 
Function
EX
:
 
Simplify
 
the
 
following
 
Boolean function
 
into
 
product-of-sums
 
form
Sol:
First,
 
we
 
combine
 
the
 
squares
 
marked
 
with
 
0’s,
 
as shown in the diagram below, to obtain the
 
simplified
 
complemented
 
function
:
Then,
 
we
 
apply
 
DeMorgan’s
 
theorem
 
to
 
obtain
 
the
 
simplified
 
function
 
in product
 
form:
of-sums
)
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 (
A
 
Prime
 
Implicant
 
and
 
Essential
 
Prime
 
Implicant
A
 
prime
 
implicant
 
is
 
a
 
product
 
term
 
obtained
 
by
 
combining
 
the
 
maximum
 
possible number
 
of
 
adjacent
 
squares
 
in
 
the
 
map.
If
 
a
 
minterm
 
in
 
a square
 
is
 
covered
 
by
 
only
 
one
 
prime
 
implicant
,
 
that
 
prime
 
implicant
 
is said
 
to
 
be
 
essential
.
a
 
single
 
1
 
on
 
a
 
map represents
 
a
 
prime
 
implicant
 
if
 
it
 
is
 
not
 
adjacent
 
to
 
any
 
other 1’s.
Two
 
adjacent
 
1’s
 
form
 
a
 
prime
 
implicant
,
 
provided
 
that
 
they
 
are
 
not
 
within
 
a group
 
of
 
four
 
adjacent
 
squares.
Four
 
adjacent
 
1’s
 
form
 
a
 
prime
 
implicant
 
if
 
they
 
are
 
not
 
within
 
a
 
group
 
of
 
eight
 
adjacent
 
squares,
 
and
 
so on.
The
 
essential
 
prime
 
implicants
 
are
 
found
 
by
 
looking
 
at
 
each
 
square
 
marked
 
with a
 
1
 
and
 
checking
 
the
 
number
 
of prime
 
implicants
 
that
 
cover
 
it.
The
 
prime
 
implicant
 
is
 
essential
 
if
 
it
 
is
 
the
 
only
 
prime
 
implicant
 
that
 
covers
 
the
 
minterm
.
)
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 (
Example
 
1
Find
 
all
 
the
 
prime
 
implicants
 for
 
the
 
following
 
Boolean function,
 
and
 
determine which
 
are
 
essential:
Note:
 
The
 
procedure
 
for
 
finding
 
the
 
simplified expression
 
from
 
the
 
map
 
requires
 
that
 
we
 
first
 
determine
 
all
 
the
 
essential
 
prime
 
implicants
.
The
 
simplified
 
expression is
 
obtained
 
from
 
the
 
logical
 
sum
 
of
 
all
 
the
 
essential
 
prime
 
implicants
,
 
plus
 
other prime 
implicants
 that may be needed to cover any remaining 
minterms
 not covered by the
 
essential
 
prime
 
implicants
.
)
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 (
Example
 
1:
 
solution
Note:
 
There
 
are
 
four
 
possible
 
ways
 
that
 
the
 
function
 
can
 
be
 
expressed
 
with
 
four
 
product
 
terms
 
of
 
two literals
 
each:
)[image: ]
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 (
Example
 
2
Find
 
all
 
the
 
prime
 
implicants
 
for
 
the
 
following
 
Boolean
 
function,
 
and
 
determine
 
which
 
are
 
essential:
)
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 (
Example2:
 
Solution
Solution
)
20


 (
Exercise
Find
 
all
 
the
 
prime
 
implicants
 
for
 
the
 
following
 
Boolean
 
function,
 
and
 
determine
 
which
 
are
 
essential
 
(note
 
the
 
d
 
function
 
represents
 
the
 
don’t-care
 
conditions):
F
(W,
 
X,
 
Y,
 
Z)
 
=
 
Σ(0,
 
3,
 
13,
 
15),
d(W,
 
X,
 
Y,
 
Z)=
 
Σ(4,
 
6,
 
8,
 
10)
)
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 (
The
 
NAND
 
Gate
 
as
 
a
 
Universal
 
Logic
 
Element
The
 
NAND
 
gate
 
is
 
a
 
universal
 
gate
 
because
 
it
 
can
 
be
 
used
 
to
 
produce
 
the
 
NOT,
 
the AND,
 
the
 
OR, and
 
the NOR
 
functions.
)
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 (
The
 
NAND
 
Gate
 
as
 
a
 
Universal
 
Logic
 
Element
)
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 (
The
 
NOR
 
Gate
 
as
 
a
 
Universal
 
Logic
 
Element
Like
 
the
 
NAND
 
gate,
 
the
 
NOR
 
gate
 
can
 
be
 
used
 
to
 
produce
 
the
 
NOT,
 
AND,
 
OR,
 
and
 
NAND
 
functions.
)
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 (
The
 
NOR
 
Gate
 
as
 
a
 
Universal
 
Logic
 
Element
)
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 (
Combinational
 
Logic
 
Using
 
NAND
 
Gates
A
 
NAND
 
gate
 
can
 
function as
 
either
 
a
 
NAND
 
or
 
a
 
negative-OR
Example:
 
Develop
 
the
 
output
 
expression
 
for
 
the
 
figure
 
(a)
 
below:
(a)
(b)
(c)
Solution:
)
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 (
NAND
 
Logic
 
Diagrams
 
Using
 
Dual
 
Symbols
The
 
NAND
 
symbol
 
and
 
the
 
negative-OR
 
symbol
 
are
 
called
 
dual symbols
.
All
 
logic
 
diagrams
 
using
 
NAND
 
gates
 
should
 
be
 
drawn
 
with
 
each
 
gate
 
represented
 
by
 
either
 
a
 
NAND
 
symbol
 
or
 
the
 
equivalent
 
negative-OR
 
symbol.
Although
 
using
 
all
 
NAND
 
symbols
 
as
 
in
 
Figure
 
(a)
 
is
 
correct,
 
the
 
diagram
 
in
 
part
 
(b)
 
is
 
much
 
easier
 
to
 
“read”
 
and
 
is the
 
preferred
 
method
.
)
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 (
NAND
 
Logic
 
Diagrams
 
Using
 
Dual
 
Symbols
Example:
 
Redraw
 
the
 
logic
 
diagram
 
and
 
develop
 
the
 
output
 
expression
 
for
 
the circuit
 
below
 
using
 
the
 
appropriate
 
dual symbols.
Solution:
)
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 (
Combinational
 
Logic
 
Using
 
NAND
 
Gates
Example:
 
Implement
 
each
 
expression
 
with
 
NAND
 
logic
 
using
 
appropriate
 
dual
 
symbols:
Solution:
)
[image: ]29




 (
Combinational
 
Logic
 
Using
 
NOR
 
Gates
A
 
NOR
 
gate
 
can function as
 
either
 
a
 
NOR
 
or
 
a
 
negative-AND
Example:
 
Develop
 
the
 
output
 
expression
 
for
 
the
 
figure
 
(a)
 
below
(a)
(b)
(c)
Solution:
)
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 (
NOR
 
Logic
 
Diagram
 
Using
 
Dual
 
Symbols
As
 
with
 
NAND
 
logic,
 
the
 
purpose
 
for
 
using
 
the
 
dual
 
symbols
 
is
 
to
 
make
 
the
 
logic
 
diagram
 
easier
 
to
 
read
 
and
 
analyze.
Example:
 
The
 
circuit
 
in
 
part
 
(a)
 
is
 
redrawn
 
with
 
dual
 
symbols
 
in
 
part
 
(b),
 
notice
 
that all output-to-input connections between gates are bubble-to-bubble or
 
nonbubble
-to-
nonbubble
.
Solution:
)
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 (
Combinational
 
Logic
 
Using
 
NOR
 
Gates
Example: Using appropriate dual symbols, redraw the logic diagram
 
and
 
develop
 
the
 
output
 
expression
 
for
 
the
 
circuit
 
in
 
the
 
figure
 
below:
Solution:
)
32

[image: ]

image3.jpeg
F(x,y.z) = 3(1,3,6,7)




image4.jpeg
F(x,y,z) = 11(0,2,4,5)




image5.jpeg
2 0 1
mg | my of xy | xy
m | m i wy | w

(@)

(b)




image8.jpeg
vy

R 00 o1 i 10
my | om | omy | om 00{wx'y'2’ |wx'y'z | wix'yz [wix'yz'
L S T 01| wixy'z’ | wixy'z | wixpz
mp | omy | oms | omy 11 way'z | way'z | wayz | wayz!

wy i [,
mg | my | omy | omy 10| wx'y'z’ | wx'y'z

(a)

(b)

bx




image9.jpeg
ABC + ABC + ABT + ABC





image10.jpeg
Inputs | Output
ABCD 4
0000 0
0001 0
0010 0
0011 0
0100 0 @
0101 0 PN
0110 0 &

o1 ABCD
1010 7 =
RCE ST % n(x x'x‘
1100 X Don't cares.
1101 X wLP XJ
11 i0 o —=
it X L D

(@) Truth table





image11.jpeg
ABC + ABCD




image12.jpeg
St e S50 NE S

lb
)

i
—

d

7-segment display.




image13.jpeg




image14.jpeg
From the Karnaugh map. the minimized expression for segment a is

a=A+C+BD+BD




image15.jpeg
BCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD





image16.jpeg
AB)

o1

1

10

1

A+B+OA+B+OA+B+OR+B+D)

000

010

0=

10

0~

101




image17.jpeg
A+B+C+D

cD /
AN 0 o 1/
v 5
00 0 O~ A+B+C+D
o1
i o 0= A+B+T+D
0
A





image18.jpeg
A+B+C+D@A+B+C+DA+B+C+DA+B+C+DYA+B+C+D)




image19.jpeg
AC + AB




image20.jpeg
A+B+CA+B+CA+B+CA+B+CA+B+0)




image21.jpeg
AB + 0




image22.jpeg
AC + AB=AB + ©)




image23.jpeg
_>\° =

— AC

1





image24.jpeg




image25.jpeg
(C+DYA+B+D)YA+B+C)




image26.jpeg
B+C+DA+B+C+DA+B+C+DYA+B+C+D)YA+B+C+D)




image27.jpeg
ABCD ABCD

i oo/ o0 11/ 10

o "] o [A | o [ ABCD

A Eoaa
ot o | 1 1 I« ABCD
nl| o 1 1 I<ft— ABCD

gl %
0| 1 0 1 l<1— ABCD
z 4

¥
ABCD ABCD ABCD ABCD

(b) Standard SOP:

+ABCD + ABCD + ABCD + ABCD + ABCD +
ABCD + ABCD + ABCD + ABCD





image28.jpeg
AB

o1

1

10

A+B+CT

B+C+D

7

B+C+D

(a) Minimum POS: (A + B + O)B + C + D)B + C + D)




image29.jpeg
BD
o 11/ 10

0 /6 0
af o |1 ] .
| o L
10 q 0 Ll Ub—ac

BCD
(c) Minimum SOP: AC + BC + BD + BCD




image30.jpeg
(A+B+C+DA+B+C+DA+B+C+DA+B+C+D)YA+B+C+D)A+B+C+ D)




image31.jpeg
F = AB + CD + BD'




image32.jpeg
F=(A"+B')(C'+D')(B'+ D)




image33.jpeg
cD —_—
AB 00 01 11 10
cD
00| 1 | o1 |,BcD
BC'D'
A [
oTT~0 1 0 0
mpy my mys my B
1l o 0 0 0
A mg my myy my
0| 1 1 0 1 AB
—
D

Note: BC'D' + BCD' = BD'




image34.jpeg
F(A,B.C,D) = 3(0,2,3,5,7,8,9,10, 11,13, 15)




image35.jpeg
F=BD + B'D' + CD + AD
=BD + B'D' + CD + AB’'
=BD + B'D' + B'C + AD
=BD + B'D' + B'C + AB’




image36.jpeg
(@}

4B 00 o1
R A'B'CD’
00}-1
ABCD R
ool |
My M S e -
J 11 1|
A m, , m,
| 10 1
: ABCD'
ABCD' D
Note: A'B'C'D’ + A'B'CD’ = A'B'D'
AB'CD' + ABCD' = AB'D'

A'B'D' + AB'D' =B'D'
(a) Essential prime implicants
BD and B'D’

(b) Prime implicants CD, B'C.
AD,and AB’

BC




image37.jpeg
F(w,x,y,z) = 3(0,2.4,5.6,

, 10,13, 15)




image38.jpeg
01 11

1 1
[P [
1 1
w iy T, T |7
10 1 1
[

Essential: x:

Non-essential: w'x, w’z'

F

+ (w'x or w





image39.jpeg
a4

() One NAND gate used

P g

as an inverter

» W =

(b) Two NAND gates used as an AND gate





image40.jpeg
A+B
B

—_— A —

A+B = iy A+B

(d) Four NAND gates used as a NOR gate




image41.jpeg
a—) D1

(a) One NOR gate used as an inverter

A A+B
B

A+B

(b) Two NOR gates used as an OR gate

|

A+B




image42.jpeg
(d) Four NOR gates used as a NAND gate





image43.jpeg
=3
I
Ll
=l

>+

NAND negative-OR




image44.jpeg




image45.jpeg
Bubbles cancel

AB+CD

Bubbles cancel




image46.jpeg
Equivalent NAND/Negative-OR logic diagram




image47.jpeg
AND-OR equivalent




image48.jpeg
X = (AB)(CD)

=(@A+B)C+D)

+B)+(C+D)





image49.jpeg
(a)




image50.jpeg
(ABCD)EF

(ABCD) + EF
= ABCD +EF
=(AB+CD +EF
=(AB+C)D+EF





image51.jpeg




image52.jpeg
(b)




image53.jpeg
A+B)C+(D+EF





image54.jpeg
X =(A+ B)C + (D + E)F




image55.jpeg




image56.jpeg
(a) ABC + DE () ABC+D+E




image57.jpeg
m T Ok

il

ABC+D+E




image58.jpeg
A+BNC+D)




image59.jpeg
oA w>

— Gyacts as OR

Jor
—

Gyactsas

Gy actsas OR

7]

Teo—aincen

Mi‘

A
B

&
D

Bubbles cancel

@{C\}

Buthicscanedl





image60.jpeg
X=A+B+C+D=A+B(C+D)=(A+BC+D)




image61.jpeg
NOR negative-AND




image62.jpeg
A A+B

ATBiCeD
® ¢ »—r)o;y(u[
b
) >o— AiBLCiD+ETF
£y ]

A+B+C+DNETE)
i Ex TBrC+DNE+R)
+DNE+F)
(A+B)T+D)E+F)

(a) Final output expression is obtained after several Boolean steps.




image63.jpeg
OR
(A+BC+D,~ Bubble

cangels bar

%husyﬂuubn
AND

(b) Output expression can be obtained dircctly from the function of cach gate symbol in the diagram.




image64.jpeg
X= @B+ ODE + F)

A—q
2—d

& - L. =
- _‘)—Y:ME+CMDE—F

D —q g\ DE

s

£—d — DE+F
F

AB « CYDE + F)





image65.jpeg
B




image66.png




image1.jpeg
my

my

my

my

ms

m;

mg

(a)

y

» 5 4

* 0 0 11 10

o|xyz | xy'z | ¥yz | ¥y

1oz | vz | ez | gz
(b)





image2.jpeg
Truth Table for F = xy + x'z

x

mhrHmHmoooo

¥

mH oo Mmoo

mor~omoroln

m e~ oo~ oro|lm

Minterms

‘Maxterms




image6.png




image7.png




