

[image:]1اسم التدريسي: م.م علياء محمد جواد
اسم المادة : تقنيات رقمية
المرحلة :الثانية
السنة الدراسية :2023_2024
Karnaugh mapاسم المحاظرة :

 (
Karnaugh

map

(Recap

the

maps)
Two-Variable

Map
F=
xy+x’y
Three-Variable

Map
)
2
[image:][image:]

 (
1
)

 (
Karnaugh

map

(Recap

t
he

maps)
Four

Variable

Map
)
3

 (
Karnaugh

map
Mapping

Directly

from

a

Truth

Table
Truth

table

gives

the

output

of

a

Boolean

expression

for

all

possible

input

variable

combinations.
In

the

figure

below,

you

can

see

that

the

Boolean

expression,

the

truth table, and the
Karnaugh
 map are simply different ways to

represent
a

logic

function
.
)
4

 (
Karnaugh

map
“Don’t

Care”

Conditions
Sometimes a situation arises in which
some input variable

combinations

are

not

allowed
.

For

example,

in

the

BCD

code

there

are

six

invalid

combinations:

1010,

1011,

1100,

1101,

1110,

and

1111.
Since these
unallowed
 states will never occur in an application

involving

the

BCD

code,

they

can

be

treated

as

“
don’t

care
”

terms

with

respect

to

their

effect

on

the

output.
That

is,

for

these

“
don’t

care
”

terms

either

a

1

or

a

0

may

be

assigned

to

the

output;

it

really

does

not

matter

since

they

will

never

occur.
)
[image:]5

 (
Karnaugh

map
“Don’t

Care”

Conditions
The

figure

below

shows

that

for

each

“
don’t

care
”

term,

an

X

is

placed

in

the cell.

When grouping the 1s, the
Xs
 can be treated as 1s to get the

simplest

expression.
The truth table describes a logic

function that has a 1 output only when

the

BCD

code

for

7,

8,

or

9

is

present

on

the

inputs.
If the “
don’t cares
”
are used as 1
s
, the

resulting

expression

for

the

function

is

A

+

BCD
,

as

indicated

in

part

(b).
If

the

“
don’t

cares
”

are

not

used

as

1s
,

the

resulting

expression

is
)
6

 (
Karnaugh

map
Example: In a 7-segment display, each of the seven segments is

activated for various digits. For example, segment
a
is activated for

the digits 0, 2, 3, 5, 6, 7, 8, and 9, as illustrated in the figure below.

Since each digit can be represented by a BCD code, derive an SOP

expression

for

segment

a

using

the

variables

ABCD

and

then

minimize

the expression

using a

Karnaugh

map.
)
[image:][image:]7

 (
Karnaugh

map
Solution:

The

expression

for

segment

a

is
Each term in the expression represents one of the digits in which

segment

a

is

used.

X’s

(don’t

cares)

are

entered

for

those

states

that

do

not

occur

in

the

BCD

code.
)
8

 (
Karnaugh

Map

POS

Minimization
In

the

previous

slides,

you

studied

the

minimization

of

an

SOP

expression

using

a
Karnaugh

map.
For the next slides, we focus on
POS
expressions. The approaches are

much

the

same

except

that

with

POS

expressions,

0s

representing

the

standard

sum

terms

are

placed

on

the

Karnaugh

map

instead

of

1s.
Mapping

a

Standard

POS

Expression
)
[image:]9

 (
Karnaugh

Map

POS

Minimization
Example:

Map

the

following

standard

POS

expression

on

a

Karnaugh

map
:
Solution:
)
10

 (
Karnaugh

Map

Simplification

of

POS

Expressions
The

process

for

minimizing

a

POS

expression

is

that

you

group

0s

to

produce

minimum

sum

terms.
Example:

Use

a

Karnaugh

map

to

minimize

the

following

standard

POS

expression:

Also, derive the equivalent

SOP expression.
Solution:

The

combinations of

binary

values

of

the

expression

are:

(0

+

0

+

0)(0

+

0

+ 1)(0

+ 1

+

0)(0

+

1

+

1)(1

+

1

+

0)
-
The

sum

term

for

each

blue

group

is

shown

in

the

figure,

and

the

resulting

POS

expression

is
-
Grouping

the

1s

as

shown

by

the

gray

areas

yields

an

SOP

expression
note:
)[image:][image:][image:]
[image:][image:]11

 (
Karnaugh

Map

Simplification

of

POS

Expressions
Example: Use a
Karnaugh
 map to minimize the following
POS

expression
:

Solution:

The first

term

must

be expanded

into

A

+

B

+

C
+

D
and

A

+

B
+

C

+

D

to

get

a

standard

POS

expression,

which

is

then

mapped;

and

the cells

are

grouped

as

shown

in

the

figure

below
Therefore

the

resulting

minimum

POS

expression

is
)[image:]
12

 (
Converting

Between

POS

and

SOP

Using

the

Karnaugh

Map
For

a

POS

expression,

all

the

cells

in

the

Karnaugh

map

that

do

not

contain

0s

contain

1s,

from

which

the

SOP

expression

is

derived.
Likewise,

for

an

SOP

expression,

all

the

cells

that

do

not

contain

1s

contain

0s, from

which

the

POS

expression

is

derived.
)
[image:][image:]13

 (
Converting

Between

POS

and

SOP

Using

the

Karnaugh

Map
Example:

Using

a

Karnaugh

map,

convert

the

following

standard

POS

expression into a
minimum POS expression
, a standard SOP

expression,

and

a

minimum SOP

expression.
Solution:
)[image:]
14

 (
Example:

Simplifying

the

Boolean

Function
EX
:

Simplify

the

following

Boolean function

into

product-of-sums

form
Sol:
First,

we

combine

the

squares

marked

with

0’s,

as shown in the diagram below, to obtain the

simplified

complemented

function
:
Then,

we

apply

DeMorgan’s

theorem

to

obtain

the

simplified

function

in product

form:
of-sums
)
[image:][image:]15

 (
A

Prime

Implicant

and

Essential

Prime

Implicant
A

prime

implicant

is

a

product

term

obtained

by

combining

the

maximum

possible number

of

adjacent

squares

in

the

map.
If

a

minterm

in

a square

is

covered

by

only

one

prime

implicant
,

that

prime

implicant

is said

to

be

essential
.
a

single

1

on

a

map represents

a

prime

implicant

if

it

is

not

adjacent

to

any

other 1’s.
Two

adjacent

1’s

form

a

prime

implicant
,

provided

that

they

are

not

within

a group

of

four

adjacent

squares.
Four

adjacent

1’s

form

a

prime

implicant

if

they

are

not

within

a

group

of

eight

adjacent

squares,

and

so on.
The

essential

prime

implicants

are

found

by

looking

at

each

square

marked

with a

1

and

checking

the

number

of prime

implicants

that

cover

it.
The

prime

implicant

is

essential

if

it

is

the

only

prime

implicant

that

covers

the

minterm
.
)
16

 (
Example

1
Find

all

the

prime

implicants
 for

the

following

Boolean function,

and

determine which

are

essential:
Note:

The

procedure

for

finding

the

simplified expression

from

the

map

requires

that

we

first

determine

all

the

essential

prime

implicants
.
The

simplified

expression is

obtained

from

the

logical

sum

of

all

the

essential

prime

implicants
,

plus

other prime
implicants
 that may be needed to cover any remaining
minterms
 not covered by the

essential

prime

implicants
.
)
17

 (
Example

1:

solution
Note:

There

are

four

possible

ways

that

the

function

can

be

expressed

with

four

product

terms

of

two literals

each:
)[image:]
18

 (
Example

2
Find

all

the

prime

implicants

for

the

following

Boolean

function,

and

determine

which

are

essential:
)
19

 (
Example2:

Solution
Solution
)
20

 (
Exercise
Find

all

the

prime

implicants

for

the

following

Boolean

function,

and

determine

which

are

essential

(note

the

d

function

represents

the

don’t-care

conditions):
F
(W,

X,

Y,

Z)

=

Σ(0,

3,

13,

15),
d(W,

X,

Y,

Z)=

Σ(4,

6,

8,

10)
)
21

 (
The

NAND

Gate

as

a

Universal

Logic

Element
The

NAND

gate

is

a

universal

gate

because

it

can

be

used

to

produce

the

NOT,

the AND,

the

OR, and

the NOR

functions.
)
22

 (
The

NAND

Gate

as

a

Universal

Logic

Element
)
23

 (
The

NOR

Gate

as

a

Universal

Logic

Element
Like

the

NAND

gate,

the

NOR

gate

can

be

used

to

produce

the

NOT,

AND,

OR,

and

NAND

functions.
)
24

 (
The

NOR

Gate

as

a

Universal

Logic

Element
)
25

 (
Combinational

Logic

Using

NAND

Gates
A

NAND

gate

can

function as

either

a

NAND

or

a

negative-OR
Example:

Develop

the

output

expression

for

the

figure

(a)

below:
(a)
(b)
(c)
Solution:
)
26

 (
NAND

Logic

Diagrams

Using

Dual

Symbols
The

NAND

symbol

and

the

negative-OR

symbol

are

called

dual symbols
.
All

logic

diagrams

using

NAND

gates

should

be

drawn

with

each

gate

represented

by

either

a

NAND

symbol

or

the

equivalent

negative-OR

symbol.
Although

using

all

NAND

symbols

as

in

Figure

(a)

is

correct,

the

diagram

in

part

(b)

is

much

easier

to

“read”

and

is the

preferred

method
.
)
[image:][image:][image:]27

 (
NAND

Logic

Diagrams

Using

Dual

Symbols
Example:

Redraw

the

logic

diagram

and

develop

the

output

expression

for

the circuit

below

using

the

appropriate

dual symbols.
Solution:
)
28

 (
Combinational

Logic

Using

NAND

Gates
Example:

Implement

each

expression

with

NAND

logic

using

appropriate

dual

symbols:
Solution:
)
[image:]29

 (
Combinational

Logic

Using

NOR

Gates
A

NOR

gate

can function as

either

a

NOR

or

a

negative-AND
Example:

Develop

the

output

expression

for

the

figure

(a)

below
(a)
(b)
(c)
Solution:
)
30

 (
NOR

Logic

Diagram

Using

Dual

Symbols
As

with

NAND

logic,

the

purpose

for

using

the

dual

symbols

is

to

make

the

logic

diagram

easier

to

read

and

analyze.
Example:

The

circuit

in

part

(a)

is

redrawn

with

dual

symbols

in

part

(b),

notice

that all output-to-input connections between gates are bubble-to-bubble or

nonbubble
-to-
nonbubble
.
Solution:
)
[image:][image:]31

 (
Combinational

Logic

Using

NOR

Gates
Example: Using appropriate dual symbols, redraw the logic diagram

and

develop

the

output

expression

for

the

circuit

in

the

figure

below:
Solution:
)
32

[image:]

image3.jpeg
F(x,y.z) = 3(1,3,6,7)

image4.jpeg
F(x,y,z) = 11(0,2,4,5)

image5.jpeg
2 0 1
mg | my of xy | xy
m | m i wy | w

(@)

(b)

image8.jpeg
vy

R 00 o1 i 10
my | om | omy | om 00{wx'y'2’ |wx'y'z | wix'yz [wix'yz'
L S T 01| wixy'z’ | wixy'z | wixpz
mp | omy | oms | omy 11 way'z | way'z | wayz | wayz!

wy i [,
mg | my | omy | omy 10| wx'y'z’ | wx'y'z

(a)

(b)

bx

image9.jpeg
ABC + ABC + ABT + ABC

image10.jpeg
Inputs | Output
ABCD 4
0000 0
0001 0
0010 0
0011 0
0100 0 @
0101 0 PN
0110 0 &

o1 ABCD
1010 7 =
RCE ST % n(x x'x‘
1100 X Don't cares.
1101 X wLP XJ
11 i0 o —=
it X L D

(@) Truth table

image11.jpeg
ABC + ABCD

image12.jpeg
St e S50 NE S

lb
)

i
—

d

7-segment display.

image13.jpeg

image14.jpeg
From the Karnaugh map. the minimized expression for segment a is

a=A+C+BD+BD

image15.jpeg
BCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

image16.jpeg
AB)

o1

1

10

1

A+B+OA+B+OA+B+OR+B+D)

000

010

0=

10

0~

101

image17.jpeg
A+B+C+D

cD /
AN 0 o 1/
v 5
00 0 O~ A+B+C+D
o1
i o 0= A+B+T+D
0
A

image18.jpeg
A+B+C+D@A+B+C+DA+B+C+DA+B+C+DYA+B+C+D)

image19.jpeg
AC + AB

image20.jpeg
A+B+CA+B+CA+B+CA+B+CA+B+0)

image21.jpeg
AB + 0

image22.jpeg
AC + AB=AB + ©)

image23.jpeg
_>\° =

— AC

1

image24.jpeg

image25.jpeg
(C+DYA+B+D)YA+B+C)

image26.jpeg
B+C+DA+B+C+DA+B+C+DYA+B+C+D)YA+B+C+D)

image27.jpeg
ABCD ABCD

i oo/ o0 11/ 10

o "] o [A | o [ABCD

A Eoaa
ot o | 1 1 I« ABCD
nl| o 1 1 I<ft— ABCD

gl %
0| 1 0 1 l<1— ABCD
z 4

¥
ABCD ABCD ABCD ABCD

(b) Standard SOP:

+ABCD + ABCD + ABCD + ABCD + ABCD +
ABCD + ABCD + ABCD + ABCD

image28.jpeg
AB

o1

1

10

A+B+CT

B+C+D

7

B+C+D

(a) Minimum POS: (A + B + O)B + C + D)B + C + D)

image29.jpeg
BD
o 11/ 10

0 /6 0
af o |1] .
| o L
10 q 0 Ll Ub—ac

BCD
(c) Minimum SOP: AC + BC + BD + BCD

image30.jpeg
(A+B+C+DA+B+C+DA+B+C+DA+B+C+D)YA+B+C+D)A+B+C+ D)

image31.jpeg
F = AB + CD + BD'

image32.jpeg
F=(A"+B')(C'+D')(B'+ D)

image33.jpeg
cD —_—
AB 00 01 11 10
cD
00| 1 | o1 |,BcD
BC'D'
A [
oTT~0 1 0 0
mpy my mys my B
1l o 0 0 0
A mg my myy my
0| 1 1 0 1 AB
—
D

Note: BC'D' + BCD' = BD'

image34.jpeg
F(A,B.C,D) = 3(0,2,3,5,7,8,9,10, 11,13, 15)

image35.jpeg
F=BD + B'D' + CD + AD
=BD + B'D' + CD + AB’'
=BD + B'D' + B'C + AD
=BD + B'D' + B'C + AB’

image36.jpeg
(@}

4B 00 o1
R A'B'CD’
00}-1
ABCD R
ool |
My M S e -
J 11 1|
A m, , m,
| 10 1
: ABCD'
ABCD' D
Note: A'B'C'D’ + A'B'CD’ = A'B'D'
AB'CD' + ABCD' = AB'D'

A'B'D' + AB'D' =B'D'
(a) Essential prime implicants
BD and B'D’

(b) Prime implicants CD, B'C.
AD,and AB’

BC

image37.jpeg
F(w,x,y,z) = 3(0,2.4,5.6,

, 10,13, 15)

image38.jpeg
01 11

1 1
[P [
1 1
w iy T, T |7
10 1 1
[

Essential: x:

Non-essential: w'x, w’z'

F

+ (w'x or w

image39.jpeg
a4

() One NAND gate used

P g

as an inverter

» W =

(b) Two NAND gates used as an AND gate

image40.jpeg
A+B
B

—_— A —

A+B = iy A+B

(d) Four NAND gates used as a NOR gate

image41.jpeg
a—) D1

(a) One NOR gate used as an inverter

A A+B
B

A+B

(b) Two NOR gates used as an OR gate

|

A+B

image42.jpeg
(d) Four NOR gates used as a NAND gate

image43.jpeg
=3
I
Ll
=l

>+

NAND negative-OR

image44.jpeg

image45.jpeg
Bubbles cancel

AB+CD

Bubbles cancel

image46.jpeg
Equivalent NAND/Negative-OR logic diagram

image47.jpeg
AND-OR equivalent

image48.jpeg
X = (AB)(CD)

=(@A+B)C+D)

+B)+(C+D)

image49.jpeg
(a)

image50.jpeg
(ABCD)EF

(ABCD) + EF
= ABCD +EF
=(AB+CD +EF
=(AB+C)D+EF

image51.jpeg

image52.jpeg
(b)

image53.jpeg
A+B)C+(D+EF

image54.jpeg
X =(A+ B)C + (D + E)F

image55.jpeg

image56.jpeg
(a) ABC + DE () ABC+D+E

image57.jpeg
m T Ok

il

ABC+D+E

image58.jpeg
A+BNC+D)

image59.jpeg
oA w>

— Gyacts as OR

Jor
—

Gyactsas

Gy actsas OR

7]

Teo—aincen

Mi‘

A
B

&
D

Bubbles cancel

@{C\}

Buthicscanedl

image60.jpeg
X=A+B+C+D=A+B(C+D)=(A+BC+D)

image61.jpeg
NOR negative-AND

image62.jpeg
A A+B

ATBiCeD
® ¢ »—r)o;y(u[
b
) >o— AiBLCiD+ETF
£y]

A+B+C+DNETE)
i Ex TBrC+DNE+R)
+DNE+F)
(A+B)T+D)E+F)

(a) Final output expression is obtained after several Boolean steps.

image63.jpeg
OR
(A+BC+D,~ Bubble

cangels bar

%husyﬂuubn
AND

(b) Output expression can be obtained dircctly from the function of cach gate symbol in the diagram.

image64.jpeg
X= @B+ ODE + F)

A—q
2—d

& - L. =
- _‘)—Y:ME+CMDE—F

D —q g\ DE

s

£—d — DE+F
F

AB « CYDE + F)

image65.jpeg
B

image66.png

image1.jpeg
my

my

my

my

ms

m;

mg

(a)

y

» 5 4

* 0 0 11 10

o|xyz | xy'z | ¥yz | ¥y

1oz | vz | ez | gz
(b)

image2.jpeg
Truth Table for F = xy + x'z

x

mhrHmHmoooo

¥

mH oo Mmoo

mor~omoroln

m e~ oo~ oro|lm

Minterms

‘Maxterms

image6.png

image7.png

