

Al-Mustaqbal University
College of Engineering and Technology
Department of Biomedical
Engineering
Stage: three
Signal Processing
2023-2024
Lecture (8): Non-recursive digital filter (FIR)

Transfer Function of Finite Impulse Response(FIR)

An Finite Impulse Response (FIR) filter is completely specified by the following input-output relationship

$$
\begin{aligned}
& y(n)=\sum_{k=0}^{N} b(k) x(n-k) \\
& y(\mathrm{n})=b_{0} x(n)+b_{1} x(n-1)+b_{2} x(n-2)+\cdots+b_{k} x(n-k)
\end{aligned}
$$

OR

$$
\begin{aligned}
& H(z)=\frac{Y(z)}{X(z)}=\sum_{k=0}^{N} b(k) z^{-k} \\
& H(z)=b_{0}+b_{1} z^{-1}+b_{2} z^{-2}+\cdots+b_{k} z^{-k}
\end{aligned}
$$

The length of filter $=k+1$
The filter coefficients $b_{0}, b_{1}, b_{2}, b_{K}$ are the impulse response $h(n)$ of the filter .

Properties of FIR filter

- FIR filters have a finite-duration impulse response.
- FIR filters are non-recursive filters.
- No feedback
- Always stable
- Simple to implement

Examplel\Given the following FIR filter

$$
\mathrm{y}(\mathrm{n})=0.1 \mathrm{x}(\mathrm{n})+0.25 \mathrm{x}(\mathrm{n}-1)+0.2 \mathrm{x}(\mathrm{n}-2)
$$

Determine the transfer function, filter length, nonzero coefficients, and impulse response.

Sol
Applying z-transform on both sides of the difference equation yields $\mathrm{Y}(\mathrm{z})=0.1 \mathrm{X}(\mathrm{z})+0.25 \mathrm{z}^{-1} \mathrm{X}(\mathrm{z})+0.2 \mathrm{z}^{-2} \mathrm{X}(\mathrm{z})$
1)Then the transfer function is found to be

$$
H(z)=\frac{Y(z)}{X(z)}=0.1+0.25 z^{-1}+0.2 z^{-2}
$$

2)filter length is $k+1=3$
3)nonzero coefficients $b_{0}=0.1 \quad b_{1}=0.25 \quad b_{2}=0.2$
4)impulse response $\mathrm{h}(\mathrm{n})=0.1 \delta[n]+0.25 \delta[n-1]+0.2 \delta[n-2]$

Examplell A FIR filter has a set of filter coefficients $\left\{b_{k}\right\}=\{3,-1,2,1\}$.
Determine the difference equation for the filter.
Sol// The length of the filter is 4 .
$y[n]=3 x[n]-x[n-1]+2 x[n-2]+x[n-3]$
Examplel\ Determine the first four samples in the impulse response for the FIR filter.
$y[n]=0.5(x[n]+x[n-1]+x[n-2])$
Sol
Substituting $\delta[\mathrm{n}]$ for $x[n]$ and $\mathrm{h}[\mathrm{n}]$ for $\mathrm{y}[n]$.
$h[n]=0.5(\delta[n]+\delta[n-1]+\delta[n-2])$
$h[0]=0.5(\delta[0]+\delta[-1]+\delta[-2])=0.5(1.0+0.0+0.0)=0.5$
$h[1]=0.5(\delta[1]+\delta[0]+\delta[-1])=0.5(0.0+1.0+0.0)=0.5$
$h[2]=0.5(\delta[2]+\delta[1]+\delta[0])=0.5(0.0+0.0+1.0)=0.5$
$h[3]=0.5(\delta[3]+\delta[2]+\delta[1])=0.5(0.0+0.0+0.0)=0$

Basic elements of digital filter structures

- Adder has two inputs and one output.
- Multiplier (gain) has single-input, single-output.
- Delay element delays the signal passing through it by one sample. It is implemented by using a shift register.

FIR Filter structures

Direct form: a direct implementation of the convolution operation . the number of delay equal to the order of the filter.

Examplel\Draw the direct form structure for the FIR filter represented by the following difference equation

$$
y[n]=x[n]-2 x[n-1]-2 x[n-2]+3 x[n-3]
$$

Sol:

Example//Based on the transfer function, realize the digital filter using the direct form.

$$
H(z)=\left(1-2 z^{-1}\right)\left(1+z^{-1}-4 z^{-2}\right)
$$

Sol// Since the transfer function has only the numerator part or zeroes, therefore this is an FIR filter.

$$
\begin{gathered}
H(z)=\frac{y(z)}{x(z)}=\left(1-2 z^{-1}\right)\left(1+z^{-1}-4 z^{-2}\right) \\
y(z)=x(z)-z^{-1} x(z)-6 z^{-2} x(z)+8 z^{-3} x(z) \\
y(n)=x(n)-x(n-1)-6 x(n-2)+8 x(n-3)
\end{gathered}
$$

Example// for this difference equation find the direct-form

$$
y(n)=3 x(n)+3 x(n-1)+2 x(n-2)-2 x(n-3)
$$

