

اسم المادة : تقنيات رقمية اسم التدريسي :م.م علياء محد جواد

المرحلة : الثانية السنة الدراسية :2024_2023

عنوان المحاظرة:Logic Gates

1

Logic Gates

- The inverter (NOT circuit) performs the operation called *inversion* or *complementation*.
- The inverter changes one logic level to the opposite level. In terms of bits, it changes a 1 to a 0 and a 0 to a 1.
- Standard logic symbols for the **inverter** are shown below:

• The "bubble" indicates negation (**inversion** or *complementation*) when it appears on the input or output of any logic element.

Logic Gates The inverter (NOT circuit)

Inverter Truth Table

Inverter truth table.				
Input Outpu				
LOW (0)	HIGH (1)			
HIGH (1)	LOW (0)			

- A truth table shows the output for each possible input in terms of levels and corresponding bits.
- Inverter Operation

3

Logic Gates The inverter (NOT circuit)

- Logic Expression for an Inverter
- In **Boolean algebra**, which is the mathematics of logic circuits, a variable is generally designated by one or two letters although there can be more.
- The **complement** of a variable is designated by a bar over the letter.
- The operation of an inverter (NOT circuit) can be expressed as follows: If the input variable is called A and the output variable is called X, then

$$X = \overline{A}$$
 $A \longrightarrow X = \overline{A}$

The inverter (NOT circuit) An Application

• The figure below shows a circuit for producing the 1's complement of an 8-bit binary number.

• The bits of the binary number are applied to the inverter inputs and the 1's complement of the number appears on the outputs.

5

The AND Gate

- The term gate is used to describe a circuit that performs a basic logic operation.
- The AND gate is one of the basic gates that can be combined to form any logic function.
- An AND gate can have two or more inputs and performs what is known as logical multiplication.

Inp	outs	Output
A	\boldsymbol{B}	X
0	0	0
0	1	0
1	0	0
1	1	1

Logic Gates

• The total number of possible combinations of **binary inputs** to a gate is determined by the following formula:

$$N = 2^{n}$$

where N is the number of possible input combinations and n is the number of input variables.

Example: Develop the truth table for a 3-input AND gate

Solution:

	Inputs	Output		
\boldsymbol{A}	\boldsymbol{B}	C	X	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	0	
1	0	1	0	
1	1	0	0	
1	1	1	1	

7

AND Gate

- Logic Expressions for an AND Gate
- The logical AND function of two variables is represented mathematically either by placing a dot between the two variables, as A.B, or by simply writing the adjacent letters without the dot, as AB.
- Boolean multiplication follows the same basic rules governing binary multiplication, and are as follows:

 $0 \cdot 0 = 0$ $0 \cdot 1 = 0$ $1 \cdot 0 = 0$ $1 \cdot 1 = 1$

Boolean multiplication is the same as the AND function.

Boolean expressions for AND gates with two, three, and four inputs.

The OR Gate

- An OR gate performs what is known as logical addition.
- An OR gate can have two or more inputs and one output.

• OR Gate Truth Table
Truth table for a 2-input

OR g	ate.	W 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inp	outs	Output
\boldsymbol{A}	\boldsymbol{B}	X
0	0	0
0	1	1
1	0	1
1	1	1

С

OR Gate

- Logic Expressions for an OR Gate
- The logical OR function of two variables is represented mathematically by a + between the two variables, e.g., X= A + B. The plus sign is read as "OR."
- The basic rules for **Boolean addition** are as follows:

$$0 + 0 = 0$$

 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 1$

Boolean addition is the same as the OR function.

NAND Gate

- The NAND gate is a popular logic element because it can be used as a universal gate such that NAND gates can be used in combination to perform the AND, OR, and inverter operations.
- The NAND gate is the same as the AND gate except the output is
- inverted.

11

NAND Gate

- A **NAND** gate produces a LOW output only when all the inputs are HIGH. When any of the inputs is LOW, the output will be HIGH.
- The table below is for the specific case of a 2-input NAND gate

NAND gate.							
Inp	outs	Output					
A	В	X					
0	0	1					
0	1	1					
1	0	1					

Truth table for a 2-input

1 = HIGH, 0 = LOW

NAND Gate

- Negative-OR Equivalent Operation of a NAND Gate
- For a 2-input NAND gate performing a negative-OR operation, output X is HIGH when either input A or input B is LOW, or when both A and B are LOW.

- Logic Expressions for a NAND Gate
- The Boolean expression for the output of a 2-input NAND gate is

X = AB where a bar over a variable or variables indicates an inversion.

13

The NOR Gate

- The NOR gate, like the NAND gate, is a useful logic element because it can also be used as a universal gate.
- The NOR is the same as the OR except the output is inverted.

• Operation of a NOR Gate

Inp	uts	Output
A	B	X
0	0	1
0	1	0
1	0	0
1	1	0

The NOR Gate

- Negative-AND Equivalent Operation of the NOR Gate
- For a 2-input NOR gate performing a negative-AND operation, output X is HIGH only when both inputs A and B are LOW.

• Logic Expressions for a NOR Gate

The Boolean expression for the output of a 2-input NOR gate can be written as

$$X = A + B$$

$$0 \quad 0 \quad \overline{0+0} = \overline{0} = 1$$

$$0 \quad 1 \quad 0 + \overline{1} = 0$$

$$1 \quad 0 \quad 1 + \overline{0} = \overline{1} = 0$$

$$1 \quad 1 \quad 1 + \overline{1} = \overline{1} = 0$$

15

The Exclusive-OR Gate

• The output of an exclusive-OR gate is HIGH *only* when the two inputs are at opposite logic levels.

(a) Distinctive shape

(b) Rectangular outline

The Exclusive-NOR Gate

• For an exclusive-NOR gate, output X is LOW when input A is LOW and input B is HIGH, or when A is HIGH and B is LOW; X is HIGH when A and B are both HIGH or both LOW.

Truth table for an exclusive-NOR gate.

Inp	outs	Output	
A	В	X	
0	0	1	
0	1	0	
1	0	0	
1	1	1	

(a) Distinctive shape

(b) Rectangular outline

17

Timing Diagrams

- a timing diagram is basically a graph that accurately displays the relationship of two or more waveforms with respect to each other on a time basis.
- Example:
- A waveform is applied to an inverter in the figure below.

- Determine the output waveform corresponding to the input and show the timing diagram.
- Solution:
- The output waveform is exactly opposite to the input (inverted).

Boolean Algebra and Logic Simplification

- Boolean algebra is the mathematics of digital logic.
- A variable is a symbol (usually an italic uppercase letter or word) used to represent an action, a condition, or data. In Boolean algebra, any single variable can have only a 1 or a 0 value.
- The **complement** is the inverse of a variable and it is indicated by a bar over the variable (overbar). For example, the complement of the variable A is A. If A = 1, then A = 0. If A = 0, then A = 1.
- The **complement** of the variable *A* is read as "not *A*" or "*A* bar." Sometimes a prime symbol rather than an overbar is used to denote the complement of a variable; for example, *A'* indicates a complement of *A*.
- A literal is a variable or the complement of a variable.

19

Boolean Addition

- The **Boolean addition** is equivalent to the **OR** operation.
- In Boolean algebra, a sum term is a sum of literals.
- Some examples of sum terms are A + B, $A + \overline{B}$, $A + B + \overline{C}$, and $\overline{A} + B + C + D$.
- A **sum term** is equal to 1 when one or more of the literals in the term are 1. A **sum term** is equal to 0 only if each of the literals is 0.
- Example: Determine the values of A, B, C, and D that make the sum term A + B + C + D equal to 0.
- Solution:
- For the sum term to be 0, each_of the literals in the term must be 0. Therefore, $A = \mathbf{0}$, $B = \mathbf{1}$ so that B = 0, $C = \mathbf{0}$, and $D = \mathbf{1}$ so that D = 0.
- A + B + C + D = 0 + 1 + 0 + 1 = 0 + 0 + 0 + 0 = 0

Boolean Multiplication

- Boolean multiplication is equivalent to the AND operation.
- In Boolean algebra, a product term is the product of literals.
- Some examples of product terms are $A\overline{B}$, AB, ABC, and $A\overline{B}C\overline{D}$.
- A product term is equal to 1 only if each of the literals in the term is 1. A product term is equal to 0 when one or more of the literals are 0.
- Example: Determine the values of A, B, C, and D that make the product term ABCD equal to 1.
- Solution:
- For the product term to be 1, each of the literals in the term must be 1. Therefore, A = 1, B = 0 so that B = 1, C = 1, and D = 0 so that D = 1.
 - *ABCD* = 1 . 0 . 1 . 0 = 1 . 1 . 1 . 1 = 1

21

Laws and Rules of Boolean Algebra

• The *commutative law of addition* for two variables is written as:

$$A+B=B+A$$

• The *commutative law of multiplication* for two variables is:

AB=BA

• The associative law of addition is written as follows for three variables:

$$A + (B + C) = (A+B)+C$$

The *associative law of multiplication* is written as follows for three variables:

A(BC)=(AB)C

Laws and Rules of Boolean Algebra

- Distributive Law
- The distributive law is written for three variables as follows:

A(B+C)=AB+AC

Basic rules of Boolean algebra

```
      1. A + 0 = A
      7. A \cdot A = A

      2. A + 1 = 1
      8. A \cdot \overline{A} = 0

      3. A \cdot 0 = 0
      9. \overline{\overline{A}} = A

      4. A \cdot 1 = A
      10. A + AB = A

      5. A + A = A
      11. A + \overline{AB} = A + B

      6. A + \overline{A} = 1
      12. (A + B)(A + C) = A + BC
```

A, B, or C can represent a single variable or a combination of variables.

23

Rules of Boolean Algebra

- Rule 1: A + 0 = A. A variable ORed with 0 is always equal to the variable.
- Rule 2: A +1= 1. A variable ORed with 1 is always equal to 1.
- Rule 3: A.0= 0. A variable ANDed with 0 is always equal to 0.
- Rule 4: A. 1=A. A variable ANDed with 1 is always equal to the variable.
- Rule 5: A+A= A. A variable ORed with itself is always equal to the variable.
- Rule 6: A+A= 1. A variable ORed with its complement is always equal to 1.
- Rule 7: A.A = A. A variable ANDed with itself is always equal to the variable.
- Rule 8: A.A=0. A variable ANDed with its complement is always equal to 0.
- Rule 9: A= A. The double complement of a variable is always equal to the variable.

Rules of Boolean Algebra

• Rule 10: A + AB = A. This rule can be proved by applying the distributive law, rule 2, and rule 4 as follows:

$$A + AB = A \cdot 1 + AB = A(1 + B)$$
 Factoring (distributive law)
= $A \cdot 1$ Rule 2: $(1 + B) = 1$
= A Rule 4: $A \cdot 1 = A$

	A + AB	AB	В	A
A -	0	0	0	0
	0	0	1	0
$B \longrightarrow$	1	0	0	1
1	1	1	1	1
A straight connection	•		equ	†

25

Rules of Boolean Algebra

• Rule 11: $A + \overline{AB} = A + B$. This rule can be proved as follows:

$$A + \overline{A}B = (A + AB) + \overline{A}B$$
 Rule 10: $A = A + AB$
 $= (AA + AB) + \overline{A}B$ Rule 7: $A = AA$
 $= AA + AB + A\overline{A} + \overline{A}B$ Rule 8: adding $A\overline{A} = 0$
 $= (A + \overline{A})(A + B)$ Factoring
 $= 1 \cdot (A + B)$ Rule 6: $A + \overline{A} = 1$
 $= A + B$ Rule 4: drop the 1

A	В	$\overline{A}B$	$A + \overline{A}B$	A + B	_
0	0	0	0	0	$A \rightarrow \square$
0	1	1	1	1	
1	0	0	1	1	В
4	1	0	1	1	↓

Rules of Boolean Algebra

• Rule 12: (A + B)(A + C) = A + BC. This rule can be proved as follows:

$$(A + B)(A + C) = AA + AC + AB + BC$$
 Distributive law
 $= A + AC + AB + BC$ Rule 7: $AA = A$
 $= A(1 + C) + AB + BC$ Factoring (distributive law)
 $= A \cdot 1 + AB + BC$ Rule 2: $1 + C = 1$
 $= A(1 + B) + BC$ Factoring (distributive law)
 $= A \cdot 1 + BC$ Rule 2: $1 + B = 1$
 $= A + BC$ Rule 4: $A \cdot 1 = A$

0 0 0 0			A + C	A + B	C	В	A
	0	0	0	0	0	0	0
0 1 0 0 0 A	0	0	1	0	1	0	0
1 0 0 0 0 -	0	0	0	1	0	1	0
1 1 1 1 C	1	1	1	1	1	1	0
1 1 1 0 1	0	1	1	1	0	0	1
1 1 1 0 1	0	1	1	1	1	0	1
1 1 1 0 1 1	0	1	1	1	0	1	1
1 1 1 1 1 1 0	1	1	1	1	1	1	1
equal	Taxable 1	Ť					

27

DeMorgan's Theorems

- DeMorgan's first theorem is stated as follows:
- The complement of a product of variables is equal to the sum of the complements of the variables.

The formula for expressing this theorem for two variables is

$$\overline{XY} = \overline{X} + \overline{Y}$$

DeMorgan's second theorem is stated as follows:

• The complement of a sum of variables is equal to the product of the complements of the variables.

The formula for expressing this theorem for two variables is

$$\overline{X + Y} = \overline{X}\overline{Y}$$

Applying DeMorgan's Theorems

• The following procedure illustrates the application of DeMorgan's theorems and Boolean algebra to the specific expression

$$\overline{A + B\overline{C}} + D(\overline{E + F})$$

Step 1: Identify the terms to which you can apply DeMorgan's theorems, and think of each term as a single variable. Let $\overline{A + B\overline{C}} = X$ and $D(\overline{E + \overline{F}}) = Y$.

Step 2: Since $\overline{X} + \overline{Y} = \overline{X}\overline{Y}$,

$$\overline{(\overline{A} + B\overline{\overline{C}}) + (\overline{D(E + \overline{F})})} = (\overline{\overline{A} + B\overline{\overline{C}}})(\overline{D(E + \overline{F})})$$

Step 3: Use rule $9(\overline{\overline{A}} = A)$ to cancel the double bars over the left term (this is not part of DeMorgan's theorem).

$$(\overline{\overline{A} + B\overline{\overline{C}}})(\overline{D(\overline{E} + \overline{F})}) = (A + B\overline{C})(\overline{D(\overline{E} + \overline{F})})$$

Step 4: Apply DeMorgan's theorem to the second term.

$$(A+B\overline{C})(\overline{D(\overline{E}+\overline{F})})=(A+B\overline{C})(\overline{D}+(\overline{\overline{E}+\overline{F}}))$$

Step 5: Use rule $9(\overline{\overline{A}} = A)$ to cancel the double bars over the $E + \overline{F}$ part of the term.

$$(A + B\overline{C})(\overline{D} + \overline{E + F}) = (A + B\overline{C})(\overline{D} + E + \overline{F})$$

29

Applying DeMorgan's Theorems

• Example: Apply DeMorgan's theorems to the following expression:

$$\overline{(A+B+C)D}$$

• Solution:

Let A + B + C = X and D = Y. The expression $\overline{(A + B + C)D}$ is of the form $\overline{XY} = \overline{X} + \overline{Y}$ and can be rewritten as

$$\overline{(A+B+C)D} = \overline{A+B+C} + \overline{D}$$

Next, apply DeMorgan's theorem to the term $\overline{A + B + C}$.

$$\overline{A+B+C}+\overline{D}=\overline{A}\overline{B}\overline{C}+\overline{D}$$

Applying DeMorgan's Theorems

• Example: Apply DeMorgan's theorems to the following expression:

$$\overline{ABC + DEF}$$

Solution

Let ABC = X and DEF = Y. The expression $\overline{ABC + DEF}$ is of the form $\overline{X + Y} = \overline{XY}$ and can be rewritten as

$$\overline{ABC} + \overline{DEF} = (\overline{ABC})(\overline{DEF})$$

Next, apply DeMorgan's theorem to each of the terms \overline{ABC} and \overline{DEF} .

$$(\overline{ABC})(\overline{DEF}) = (\overline{A} + \overline{B} + \overline{C})(\overline{D} + \overline{E} + \overline{F})$$

31

Applying DeMorgan's Theorems

• Example: Apply DeMorgan's theorems to the following expression:

$$\overline{AB} + \overline{CD} + EF$$

Solution:

Let $A\overline{B} = X$, $\overline{C}D = Y$, and EF = Z. The expression $\overline{AB} + \overline{C}D + EF$ is of the form $\overline{X} + \overline{Y} + \overline{Z} = \overline{X}\overline{Y}\overline{Z}$ and can be rewritten as

$$\overline{A\overline{B}} + \overline{C}D + EF = (\overline{A\overline{B}})(\overline{\overline{C}D})(\overline{EF})$$

Next, apply DeMorgan's theorem to each of the terms \overline{AB} , $\overline{\overline{CD}}$, and \overline{EF} .

$$(\overline{A}\overline{B})(\overline{\overline{C}D})(\overline{EF}) = (\overline{A} + B)(C + \overline{D})(\overline{E} + \overline{F})$$

Applying DeMorgan's Theorems

- Example: Apply DeMorgan's theorems to each of the following expressions:
 - (a) $\overline{(\overline{A+B})} + \overline{\overline{C}}$
 - (b) $\overline{(\overline{A} + B) + CD}$
 - (c) $\overline{(A+B)\overline{C}D} + E + \overline{F}$
- Solution
- (a) $\overline{(\overline{A}+\overline{B})}+\overline{\overline{C}}=(\overline{\overline{A}+\overline{B}})\overline{\overline{\overline{C}}}=(A+B)C$
- (b) $\overline{(\overline{A}+B)+CD}=(\overline{\overline{A}+B})\overline{CD}=(\overline{\overline{A}B})(\overline{C}+\overline{D})=A\overline{B}(\overline{C}+\overline{D})$
- (c) $\overline{(A+B)\overline{C}D} + E + \overline{F} = \overline{((A+B)\overline{C}D)}(\overline{E} + \overline{F}) = (\overline{A}\overline{B} + C + D)\overline{E}F$

33

Applying DeMorgan's Theorem

- Example:
- The Boolean expression for an exclusive-OR gate is AB + AB. With this as a starting point, use DeMorgan's theorems and any other rules or laws that are applicable to develop an expression for the exclusive-NOR gate.
- Solution:

Start by complementing the exclusive-OR expression and then applying DeMorgan's theorems as follows:

$$\overline{A\overline{B} + \overline{A}B} = (\overline{A\overline{B}})(\overline{\overline{A}B}) = (\overline{A} + \overline{\overline{B}})(\overline{\overline{A}} + \overline{B}) = (\overline{A} + B)(A + \overline{B})$$

Next, apply the distributive law and rule 8 ($A \cdot \overline{A} = 0$).

$$(\overline{A} + B)(A + \overline{B}) = \overline{A}A + \overline{A}\overline{B} + AB + B\overline{B} = \overline{A}\overline{B} + AB$$

The final expression for the XNOR is $\overline{AB} + AB$. Note that this expression equals 1 any time both variables are 0s or both variables are 1s.