```
                    اسم المادة : تقتيات رقمية
اسم التتريسي :م.م علياء كحم جواد
    المرحلة : الثانية
اللسنة الاراسية : 2023 2024
عنوان المحاظرة:Logic Gates
```

1

Logic Gates

- The inverter (NOT circuit) performs the operation called inversion or complementation.
- The inverter changes one logic level to the opposite level. In terms of bits, it changes a 1 to a 0 and a 0 to a 1 .
- Standard logic symbols for the inverter are shown below:

(a) Distinctive shape symbols with negation indicators

(b) Rectangular outline symbols with polarity indicators
- The "bubble" indicates negation (inversion or complementation) when it appears on the input or output of any logic element.

2

Logic Gates
 The inverter (NOT circuit)

- Inverter Truth Table

Inverter truth table.

Input	Output
LOW (0)	HIGH (1)
HIGH (1)	LOW (0)

- A truth table shows the output for each possible input in terms of levels and corresponding bits.
- Inverter Operation

Input pulse

Output pulse

Logic Gates
 The inverter (NOT circuit)

- Logic Expression for an Inverter
- In Boolean algebra, which is the mathematics of logic circuits, a variable is generally designated by one or two letters although there can be more.
- The complement of a variable is designated by a bar over the letter.
- The operation of an inverter (NOT circuit) can be expressed as follows: If the input variable is called A and the output variable is called X, then

$$
X=\bar{A}
$$

The inverter (NOT circuit) An Application

- The figure below shows a circuit for producing the 1's complement of an 8 -bit binary number.

- The bits of the binary number are applied to the inverter inputs and the 1 's complement of the number appears on the outputs.

The AND Gate

- The term gate is used to describe a circuit that performs a basic logic operation.
- The AND gate is one of the basic gates that can be combined to form any logic function.
- An AND gate can have two or more inputs and performs what is known as logical multiplication.

(a) Distinctive shape

(b) Rectangular outline with the AND (\&) qualifying symbol

Truth table for a 2-input AND gate.

Logic Gates

- The total number of possible combinations of binary inputs to a gate is determined by the following formula:
$N=2^{n}$
where N is the number of possible input combinations and n is the number of input variables.

Example: Develop the truth table for a 3-input AND gate
Solution:

Inputs			Output	
\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{X}	
0	0	0		
0	0	1	0	
0	1	0		
0	1	0		
1	0	0		
1	0	0		
1	1	0	0	
1	1	1		
1		0		

7

AND Gate

- Logic Expressions for an AND Gate
- The logical AND function of two variables is represented mathematically either by placing a dot between the two variables, as $A . B$, or by simply writing the adjacent letters without the dot, as $A B$.
- Boolean multiplication follows the same basic rules governing binary multiplication, and are as follows:

$$
\begin{aligned}
& 0 \cdot 0=0 \\
& 0 \cdot 1=0 \\
& 1 \cdot 0=0 \\
& 1 \cdot 1=1
\end{aligned} \quad \text { Boolean multiplication is the same as the AND function. }
$$

Boolean expressions for AND gates with two, three, and four inputs.

The OR Gate

- An OR gate performs what is known as logical addition.
- An OR gate can have two or more inputs and one output.

- OR Gate Truth Table

Truth table for a 2-input OR gate.

9

OR Gate

- Logic Expressions for an OR Gate
- The logical OR function of two variables is represented mathematically by a + between the two variables, e.g., $X=A+B$. The plus sign is read as "OR."
- The basic rules for Boolean addition are as follows:

$$
\begin{aligned}
& 0+0=0 \\
& 0+1=1 \\
& 1+0=1 \\
& 1+1=1
\end{aligned}
$$

- Boolean addition is the same as the OR function.

NAND Gate

- The NAND gate is a popular logic element because it can be used as a universal gate such that NAND gates can be used in combination to perform the AND, OR, and inverter operations.
- The NAND gate is the same as the AND gate except the output is
- inverted.

(a) Distinctive shape, 2-input NAND gate and its NOT/AND equivalent

(b) Rectangular outline, 2-input NAND gate with polarity indicator

NAND Gate

- A NAND gate produces a LOW output only when all the inputs are HIGH. When any of the inputs is LOW, the output will be HIGH.
- The table below is for the specific case of a 2-input NAND gate

NAND Gate

- Negative-OR Equivalent Operation of a NAND Gate
- For a 2-input NAND gate performing a negative-OR operation, output X is HIGH when either input A or input B is LOW, or when both A and B are LOW.

- Logic Expressions for a NAND Gate
- The Boolean expression for the output of a 2 -input NAND gate is
$X=A B$ where a bar over a variable or variables indicates an inversion.

The NOR Gate

- The NOR gate, like the NAND gate, is a useful logic element because it can also be used as a universal gate.
- The NOR is the same as the OR except the output is inverted.

(a) Distinctive shape, 2 -input NOR gate and its NOT/OR equivalent

(b) Rectangular outline, 2-input NOR gate with polarity indicator
- Operation of a NOR Gate

The NOR Gate

- Negative-AND Equivalent Operation of the NOR Gate
- For a 2 -input NOR gate performing a negative-AND operation, output X is HIGH only when both inputs A and B are LOW.

- Logic Expressions for a NOR Gate

The Boolean expression for the output of a 2-input NOR gate can be written as
$X=A+B$

A	B	$\overline{A+B}=X$
0	0	$\overline{0+0}=\overline{0}=1$
0	1	$\overline{0+1}=\overline{1}=0$
1	0	$\overline{1+0}=\overline{1}=0$
1	1	$\overline{1+1}=\overline{1}=0$

The Exclusive-OR Gate

- The output of an exclusive-OR gate is HIGH only when the two inputs are at opposite logic levels.

Truth table for an exclusiveOR gate.

Inputs			Output
\boldsymbol{A}	\boldsymbol{B}		\boldsymbol{X}
	0	0	
0	1		1
1	0		1
1	1		0

(a) Distinctive shape

(b) Rectangular outline

The Exclusive-NOR Gate

- For an exclusive-NOR gate, output X is LOW when input A is LOW and input B is HIGH, or when A is HIGH and B is LOW; X is HIGH when A and B are both HIGH or both LOW.

Truth table for an exclusive- NOR gate. Inputs N		
0	B	X
0	0	
0	1	0
1	0	0
1	1	1

17

Timing Diagrams

- a timing diagram is basically a graph that accurately displays the relationship of two or more waveforms with respect to each other on a time basis.
- Example:
- A waveform is applied to an inverter in the figure below.

- Determine the output waveform corresponding to the input and show the timing diagram.
- Solution:
- The output waveform is exactly opposite to the input (inverted).

Boolean Algebra and Logic Simplification

- Boolean algebra is the mathematics of digital logic.
- A variable is a symbol (usually an italic uppercase letter or word) used to represent an action, a condition, or data. In Boolean algebra, any single variable can have only a 1 or a 0 value.
- The complement is the inverse of a variable and it is indicated by a bar over the variable (overbar). For example, the_complement of the variable A is A. If $A=1$, then $A=0$. If $A=0$, then $A=1$.
- The complement of the variable A is read as "not A " or " A bar." Sometimes a prime symbol rather than an overbar is used to denote the complement of a variable; for example, A^{\prime} indicates a complement of A.
- A literal is a variable or the complement of a variable.

Boolean Addition

- The Boolean addition is equivalent to the OR operation.
- In Boolean algebra, a sum term is a sum of literals.
- Some examples of sum terms are $A+B, A+B, A+B+\bar{C}$, and $\bar{A}+B+C$ $+D$.
- A sum term is equal to 1 when one or more of the literals in the term are 1. A sum term is equal to 0 only if each of the literals is 0 .
- Example: Determine the values of A, B, C, and D that make the sum term $A+B+C+D$ equal to 0 .
- Solution:
- For the sum term to be 0 , each of the literals in the term must be 0 . Therefore, $A=\mathbf{0}, B=\mathbf{1}$ so that $\bar{B}=0, C=\mathbf{0}$, and $D=\mathbf{1}$ so that $\bar{D}=0$.
- $A+B+C+D=0+1+0+1=0+0+0+0=0$

Boolean Multiplication

- Boolean multiplication is equivalent to the AND operation.
- In Boolean algebra, a product term is the product of literals.
- Some examples of product terms are $A \bar{B}, A B, A B C$, and $A \overline{B C D}$.
- A product term is equal to 1 only if each of the literals in the term is 1 . A product term is equal to 0 when one or more of the literals are 0 .
- Example: Determine the values of A, B, C, and D that make the product term $A B C D$ equal to 1 .
- Solution:
- \quad For the product term to be 1 , each of the literals in the term must be 1. Therefore, $A=\mathbf{1}, B=\mathbf{0}$ so that $B=1, C=\mathbf{1}$, and $D=\mathbf{0}$ so that $D=1$.
- $A B C D=1.0 .1 .0=1.1 .1 .1=1$

21

Laws and Rules of Boolean Algebra

- The commutative law of addition for two variables is written as:

$A+B=B+A$

- The commutative law of multiplication for two variables is:
$A B=B A$
- The associative law of addition is written as follows for three variables:
$A+(B+C)=(A+B)+C$

The associative law of multiplication is written as follows for three variables:
$A(B C)=(A B) C$

Laws and Rules of Boolean Algebra

- Distributive Law
- The distributive law is written for three variables as follows:
$A(B+C)=A B+A C$

Basic rules of Boolean algebra

1. $A+0=A$
2. $A+1=1$
3. $A \cdot 0=0$
4. $A \cdot 1=A$
5. $A \cdot A=A$
6. $A \cdot A=0$
7. $\overline{\bar{A}}=A$
8. $A+A B=A$
9. $A+A=A$
10. $A+\bar{A} B=A+B$
11. $A+\bar{A}=1 \quad$ 12. $(A+B)(A+C)=A+B C$
A, B, or C can represent a single variable or a combination of variables.

Rules of Boolean Algebra

- Rule 1: $A+0=A$. A variable ORed with 0 is always equal to the variable.
- Rule 2: $A+1=1$. A variable ORed with 1 is always equal to 1 .
- Rule 3: A.0=0. A variable ANDed with 0 is always equal to 0 .
- Rule 4: A.1=A. A variable ANDed with 1 is always equal to the variable.
- Rule 5: $A+A=A$. A variable ORed with itself is always equal to the variable.
- Rule 6: $A+\bar{A}=1$. A variable ORed with its complement is always equal to 1.
- Rule 7: $A \cdot A=A$. A variable ANDed with itself is always equal to the variable.
- Rule 8: $\underline{A} \cdot A=0$. A variable ANDed with its complement is always equal to 0.
- Rule 9: $A=A$. The double complement of a variable is always equal to the variable.

Rules of Boolean Algebra

- Rule 10: $A+A B=A$. This rule can be proved by applying the distributive law, rule 2, and rule 4 as follows:

$$
\begin{aligned}
A+A B & =A \cdot 1+A B=A(1+B) & & \text { Factoring (distributive law) } \\
& =A \cdot 1 & & \text { Rule } 2:(1+B)=1 \\
& =A & & \text { Rule } 4: A \cdot 1=A
\end{aligned}
$$

\boldsymbol{A}	\boldsymbol{B}	$\boldsymbol{A B}$	$\boldsymbol{A}+\boldsymbol{A B}$	
0	0	0	0	
0	1	0	0	
1	0	0	1	B
1	1	1	1	$A \rightarrow$
4				

Rules of Boolean Algebra

- Rule 11: $A+A B=A+B$. This rule can be proved as follows:

$$
\begin{aligned}
A+\bar{A} B & =(A+A B)+\bar{A} B & & \text { Rule 10:A=A+AB} \\
& =(A A+A B)+\bar{A} B & & \text { Rule 7:A=AA} \\
& =A A+A B+A \bar{A}+\bar{A} B & & \text { Rule 8: adding } A \bar{A}=0 \\
& =(A+\bar{A})(A+B) & & \text { Factoring } \\
& =1 \cdot(A+B) & & \text { Rule 6: } A+\bar{A}=1 \\
& =A+B & & \text { Rule 4: drop the 1 }
\end{aligned}
$$

A	B	$\bar{A} B$	$A+\bar{A} B$	$A+B$
0	0	0	0	0
0	1	1	1	1
1	0	0	1	1
1	1	0	1	1

Rules of Boolean Algebra

- Rule 12: $(A+B)(A+C)=A+B C$. This rule can be proved as follows:
$(A+B)(A+C)=A A+A C+A B+B C$ Distributive law
$=A+A C+A B+B C \quad$ Rule 7: $A A=A$
$=A(1+C)+A B+B C \quad$ Factoring (distributive law)
$=A \cdot 1+A B+B C \quad$ Rule 2: $1+C=1$
$=A(1+B)+B C \quad$ Factoring (distributive law)
$=A \cdot 1+B C \quad$ Rule 2: $1+B=1$
$=A+B C \quad$ Rule 4: $A \cdot 1=A$

A	B	C	$A+B$	$A+C$	$(A+B)(A+C)$	$B C$	$A+B C$
0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	1	1	1	1
1	0	0	1	1	1	0	1
1	0	1	1	1	1	0	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

27

DeMorgan's Theorems

- DeMorgan's first theorem is stated as follows:
- The complement of a product of variables is equal to the sum of the complements of the variables.

The formula for expressing this theorem for two variables is

$$
\overline{X Y}=\bar{X}+\bar{Y}
$$

DeMorgan's second theorem is stated as follows:

- The complement of a sum of variables is equal to the product of the complements of the variables.
The formula for expressing this theorem for two variables is

$$
\overline{X+Y}=\bar{X} \bar{Y}
$$

Applying DeMorgan's Theorems

- The following procedure illustrates the application of DeMorgan's theorems and Boolean algebra to the specific expression

$$
\overline{\overline{A+B \bar{C}}+D(\overline{E+\bar{F}})}
$$

Step 1: Identify the terms to which you can apply DeMorgan's theorems, and think of each term as a single variable. Let $\overline{A+B \bar{C}}=X$ and $D(\overline{E+\bar{F}})=Y$.
Step 2: Since $\overline{X+Y}=\bar{X} \bar{Y}$,

$$
\overline{(\overline{A+B \bar{C}})+(\overline{D(E+\bar{F}}))}=(\overline{\overline{A+B \bar{C}})}(\overline{D(\overline{E+\bar{F}})})
$$

Step 3: Use rule $9(\overline{\bar{A}}=A)$ to cancel the double bars over the left term (this is not part of DeMorgan's theorem).

$$
\overline{\overline{A+B \bar{C}})}(\overline{D(\overline{E+\bar{F}})})=(A+B \bar{C})(\overline{D(\overline{E+\bar{F}})})
$$

Step 4: Apply DeMorgan's theorem to the second term.

$$
(A+B \bar{C})(\overline{D(\overline{E+\bar{F}})})=(A+B \bar{C})(\bar{D}+(\overline{\overline{E+\bar{F}}}))
$$

Step 5: Use rule $9(\overline{\bar{A}}=A)$ to cancel the double bars over the $E+\bar{F}$ part of the term.

$$
(A+B \bar{C})(\bar{D}+\overline{\overline{E+\bar{F}}})=(A+B \bar{C})(\bar{D}+E+\bar{F})
$$

Applying DeMorgan's Theorems

- Example: Apply DeMorgan's theorems to the following expression:
$\overline{(A+B+C) D}$

- Solution:

Let $A+B+C=X$ and $D=Y$. The expression $\overline{(A+B+C) D}$ is of the form $\overline{X Y}=\bar{X}+\bar{Y}$ and can be rewritten as

$$
\overline{(A+B+C) D}=\overline{A+B+C}+\bar{D}
$$

Next, apply DeMorgan's theorem to the term $\overline{A+B+C}$.

$$
\overline{A+B+C}+\bar{D}=\bar{A} \bar{B} \bar{C}+\bar{D}
$$

Applying DeMorgan's Theorems

- Example: Apply DeMorgan's theorems to the following expression:
$\overline{A B C+D E F}$

Solution

Let $A B C=X$ and $D E F=Y$. The expression $\overline{A B C+D E F}$ is of the form $\overline{X+Y}=\bar{X} \bar{Y}$ and can be rewritten as

$$
\overline{A B C+D E F}=(\overline{A B C})(\overline{D E F})
$$

Next, apply DeMorgan's theorem to each of the terms $\overline{A B C}$ and $\overline{D E F}$.

$$
(\overline{A B C})(\overline{D E F})=(\bar{A}+\bar{B}+\bar{C})(\bar{D}+\bar{E}+\bar{F})
$$

Applying DeMorgan's Theorems

- Example: Apply DeMorgan's theorems to the following expression:

$$
\overline{A \bar{B}+\bar{C} D+E F}
$$

- Solution:

Let $A \bar{B}=X, \bar{C} D=Y$, and $E F=Z$. The expression $\overline{A \bar{B}+\bar{C} D+E F}$ is of the form $\overline{X+Y+Z}=\bar{X} \bar{Y} \bar{Z}$ and can be rewritten as

$$
\overline{A \bar{B}+\bar{C} D+E F}=(\overline{A \bar{B}})(\overline{\bar{C} D})(\overline{E F})
$$

Next, apply DeMorgan's theorem to each of the terms $\overline{A \bar{B}}, \overline{\bar{C}} D$, and $\overline{E F}$.

$$
(\overline{A \bar{B}})(\overline{\bar{C} D})(\overline{E F})=(\bar{A}+B)(C+\bar{D})(\bar{E}+\bar{F})
$$

Applying DeMorgan's Theorems

- Example: Apply DeMorgan's theorems to each of the following expressions:
(a) $\overline{(\overline{A+B})+\bar{C}}$
(b) $\overline{(\bar{A}+B)+C D}$
(c) $\overline{(A+B) \bar{C} \bar{D}+E+\bar{F}}$
- Solution
(a) $\overline{(\overline{A+B})+\bar{C}}=(\overline{\overline{A+B}}) \overline{\bar{C}}=(A+B) C$
(b) $\overline{(\bar{A}+B)+C D}=(\overline{\bar{A}+B}) \overline{C D}=(\overline{\bar{A}} \bar{B})(\bar{C}+\bar{D})=A \bar{B}(\bar{C}+\bar{D})$
(c) $\overline{(A+B) \bar{C} \bar{D}+E+\bar{F}}=\overline{((A+B) \bar{C} \bar{D})}(\overline{E+\bar{F}})=(\bar{A} \bar{B}+C+D) \bar{E} F$

Applying DeMorgan's Theorem

- Example:
- The Boolean expression for an exclusive-OR gate is $A B+A B$. With this as a starting point, use DeMorgan's theorems and any other rules or laws that are applicable to develop an expression for the exclusive-NOR gate.
- Solution:

Start by complementing the exclusive-OR expression and then applying DeMorgan's theorems as follows:

$$
\overline{A \bar{B}+\bar{A} B}=(\overline{A \bar{B}})(\overline{\bar{A} B})=(\bar{A}+\overline{\bar{B}})(\overline{\bar{A}}+\bar{B})=(\bar{A}+B)(A+\bar{B})
$$

Next, apply the distributive law and rule $8(A \cdot \bar{A}=0)$.

$$
(\bar{A}+B)(A+\bar{B})=\bar{A} A+\bar{A} \bar{B}+A B+B \bar{B}=\bar{A} \bar{B}+A B
$$

The final expression for the XNOR is $\bar{A} \bar{B}+A B$. Note that this expression equals 1 any time both variables are 0 s or both variables are 1 s .

