

Microprocessors Lap
Lecture: 6

3) Multiply (MUL):

Multiply the second operand with accumulator for unsigned number and the result is store in (AX for 8 bit, DXAX for 16bit multiplication).
$\mathrm{AX}=\mathrm{AL}$ * operand. When operand is 8 bits
$\mathrm{DX} \mathrm{AX}=\mathrm{AX} *$ operand. When operand is a 16 bits

MUL reg.
MUL mem.

Example:

MUL CX

MUL CL

Example:

Write a program to perform the following tasks:
1- Store the number 1115 H in $[1100 \mathrm{H}]$ and 1004 H in $[1102 \mathrm{H}]$.
2- Move the value $0 \mathrm{f}[1100 \mathrm{H}]$ in Reg. Ax and the value of [1102H] in Reg. Bx.
3- Multiply the value of Ax and BX and store it in AX.
4- Move the value of Ax into [1200H].
5- Move the value of DX into [1202H].

Solution:

MOV AX, 0000H
MOV DS, AX
MOV [1100H], 1115H
MOV [1102], 1004H
MOV AX, [1100H]
MOV BX, [1102]
MUL BX

$$
\text { MUL } \mathbf{B X}=\mathbf{A X} * \mathbf{B X} \Longrightarrow \mathbf{A X D X}
$$

MOV [1200H], AX
MOV [1202H], DX
HLT

Example:

Write a program to perform the following tasks:
1- Loading Register AL by the value 0A and BX by the value 26.
2- Calculate the expression $C X=A L^{2}+B X$
3- Store the result in M.L 0100.

Solution:

MOV AX, 0000H
MOV DS, AX
MOV AL, 0AH
MOV BX, 26H
MUL AL
ADD AX, BX
MUL AL= AL*AL $\Longrightarrow \mathbf{A X}$

MOV CX, AX
MOV [0100H], AX
HLT

3) Division (DIV):

Divide the second operand with accumulator for unsigned number and the result is store in (AX for 8 bit, DXAX for 16bit multiplication).
$\left.\begin{array}{l}\mathrm{AL}=\mathrm{AX} / \text { operand } \\ \mathrm{AH}=\text { remainder (modulus) }\end{array}\right\} \quad$ When operand is 8 bits

AX = (DX AX) / operand
DX = remainder (modulus)

When operand is a 16 bits

DIV reg.
DIV mem.

Example:

DIV CX

$$
\frac{A X}{\text { Source (8bits) }}=\underset{\text { باققي القسمة الناتج }}{\text { النـج }}
$$

DIV CL
$\frac{A X D X}{\text { Source (16bits) }}=A X \quad D X$

Example:

Write a program to perform the following tasks:
1- Store the number 1115 H in $[1100 \mathrm{H}]$ and 1004 H in $[1102 \mathrm{H}]$.
2- Move the value $0 \mathrm{f}[1100 \mathrm{H}]$ in Reg. Ax and the value of [1102H] in Reg. Bx.
3- Divide the value of Ax and BX and store it in AX .
4- Move the value of Ax into [1200H].
5- Move the value of DX into [1202H].

Solution:

MOV AX, 0000H
MOV DS, AX
MOV [1100H], 1115H
MOV [1102], 1004H
MOV AX, [1100H]
MOV BX, [1102]
DIV BX
MOV [1200H], AX
MOV [1202H], DX
HLT

Example:

Write a program to perform the following tasks:
1- Loading Register AL by the value 0 A and BX by the value 26.
2- Calculate the expression $C L=\left(A L^{2}+B X\right) / 2$
3- Store the result in M.L 0100.

Solution:

MOV AX, 0000H
MOV DS, AX
MOV AL, 0AH
MOV BX, 26H
MOV CH, 02H
DIV $\mathbf{C H}=\mathbf{A X} \div \mathbf{C H} \Longrightarrow A L A H$
MUL AL
ADD AX, BX
DIV CH
MOV CL, AL
MOV [0100H], CL
HLT

