

# Microprocessors Lap

Lecture: 6

2023 - 2024

# 3) Multiply (MUL):

Multiply the second operand with accumulator for unsigned number and the result is store in (AX for 8 bit, DXAX for 16bit multiplication).

AX = AL \* operand. When operand is 8 bits

DX AX = AX \* operand. When operand is a 16 bits

MUL reg.

MUL mem.

# **Example:**

#### MUL CX

AX CX

AX DX

**MUL CL** 

AL

CL

AX

Write a program to perform the following tasks:

- 1- Store the number 1115H in [1100H] and 1004H in [1102H].
- 2- Move the value of [1100H] in Reg. Ax and the value of [1102H] in Reg. Bx.
- 3- Multiply the value of Ax and BX and store it in AX.
- 4- Move the value of Ax into [1200H].
- 5- Move the value of DX into [1202H].

#### **Solution:**

MOV AX, 0000H

MOV DS, AX

MOV [1100H], 1115H

MOV [1102], 1004H

MOV AX, [1100H]

MOV BX, [1102]

**MUL BX** 

MOV [1200H], AX

MOV [1202H], DX

HLT

 $MUL BX = AX*BX \implies AXDX$ 

Write a program to perform the following tasks:

- 1- Loading Register AL by the value 0A and BX by the value 26.
- 2- Calculate the expression  $CX = AL^2 + BX$
- 3- Store the result in M.L 0100.

# **Solution:**

MOV AX, 0000H

MOV DS, AX

MOV AL, 0AH

MOV BX, 26H

MUL AL

ADD AX, BX

MOV CX, AX

MOV [0100H], AX

HLT

 $MUL AL = AL*AL \longrightarrow AX$ 

#### 3) Division (DIV):

Divide the second operand with accumulator for unsigned number and the result is store in (AX for 8 bit, DXAX for 16bit multiplication).

AL = AX / operand AH = remainder (modulus)

When operand is 8 bits

AX = (DX AX) / operandDX = remainder (modulus)

When operand is a 16 bits

DIV reg.

DIV mem.

# **Example:**

#### DIV CX

$$\frac{AX}{Source (8bits)} = AL$$
  $AH$  باقي القسمة الناتج

#### **DIV CL**

$$\frac{AX\ DX}{Source\ (16bits)} = AX \quad DX$$
باقي القسمة الناتج

Write a program to perform the following tasks:

- 1- Store the number 1115H in [1100H] and 1004H in [1102H].
- 2- Move the value of [1100H] in Reg. Ax and the value of [1102H] in Reg. Bx.
- 3- Divide the value of Ax and BX and store it in AX.
- 4- Move the value of Ax into [1200H].
- 5- Move the value of DX into [1202H].

#### **Solution:**

MOV AX, 0000H

MOV DS, AX

MOV [1100H], 1115H

MOV [1102], 1004H

MOV AX, [1100H]

MOV BX, [1102]

DIV BX

MOV [1200H], AX

MOV [1202H], DX

HLT

DIV  $BX = AXDX \div BX \longrightarrow AXDX$ 

Write a program to perform the following tasks:

- 1- Loading Register AL by the value 0A and BX by the value 26.
- 2- Calculate the expression  $CL = (AL^2 + BX)/2$
- 3- Store the result in M.L 0100.

# **Solution:**

MOV AX, 0000H

MOV DS, AX

MOV AL, 0AH

MOV BX, 26H

MOV CH, 02H

MUL AL

ADD AX, BX

DIV CH

MOV CL, AL

MOV [0100H], CL

HLT

DIV CH=  $AX \div CH \Longrightarrow AL AH$