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Lecture 3
“Viscosity”

Viscosity is a measure of a fluid's resistance to flow. It describes the internal
friction of a moving fluid. A fluid with large viscosity resists motion because its
molecular makeup gives it a lot of internal friction. A fluid with low viscosity
flows easily because its molecular makeup results in very little friction when it
Is in motion. Gases also have viscosity, although it is a little harder to notice it

in ordinary circumstances.

To understand viscosity, let fluid between two parallel infinites in width and
length plates. See Fig. 1.1. The bottom plate A is fixed and the upper plate B is
moveable. The vertical distance between the two plates is represented by h. A
constant force F is applied to the moveable plate B causing it to move along at a
constant velocity uB with respect to the fixed plate. This behavior is consistent
with the definition of a fluid: a material that deforms continuously under the

application of a shearing stress, regardless of how small the stress is.

After some infinitesimal time dt, a line of fluid that was vertical at time t= 0 will
move to a new position, as shown by the dashed line in Fig. 1.1. The tan of
angle between the line of fluid at t = 0 and t = t + dt is defined as the shearing

strain du/dy.

The fluid that touches plate A has zero velocity u=0. The fluid that touches plate
B moves with the same velocity as that of plate B, uB. That is, the molecules of
the fluid adhere to the plate and do not slide along its surface. This is known as
the no-slip condition. The no-slip condition is important in fluid mechanics. All

fluids, including both gasses and liquids, satisfy this condition.
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To understand viscosity, let us begin by imagining a hypothetical fluid
between two parallel plates which are infinite in width and length. See
Fig. 1.4.

The bottom plate A is a fixed plate. The upper plate B is a moveable
plate, suspended on the fluid, above plate A, between the two plates. The
vertical distance between the two plates is represented by h. A constant
force Fis applied to the moveable plate B causing it to move along at a
constant velocity Vy with respect to the fixed plate.

If we replace the fluid between the two plates with a solid, the
behavior of the plates would be different. The applied force F would
create a displacement d, a shear stress 7 in the material, and a shear
strain y. After a small, finite displacement, motion of the upper plate
would cease.

If we then replace the solid between the two plates with a fluid, and
reapply the force F, the upper plate will move continuously, with a
velocity of V. This behavior is consistent with the definition of a fluid:
a material that deforms continuously under the application of a shearing
stress, regardless of how small the stress is.

After some infinitesimal time di, a line of fluid that was vertical at
time ¢t = 0 will move to a new position, as shown by the dashed line in
Fig. 1.4. The angle between the line of fluid at { = Oand ¢t = ¢ + dt is
defined as the shearing strain. Shearing strain is represented by the
Greek character v (gamma).

The first derivative of the shearing strain with respect to time is
known as the rate of shearing strain dvy/dt. For small displacements,
tan(dy) is approximately equal to dy. The tangent of the angle of shear-
ing strain can also be represented as follows:

opposite  Vpdi

tan(dy) = adjacent h
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Figure 1.4 Moveable plate suspended over a layer of fluid.
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Therefore, the rate of shearing strain dvy/dt can be written as
dy/dt = Vglh

The rate of shearing strain is also denoted by ¥, and has the units of 1/s.

The fluid that touches plate A has zero velocity. The fluid that touches
plate B moves with the same velocity as that of plate B, V. That is, the
molecules of the fluid adhere to the plate and do not slide along its sur-
face. This 1s known as the no-slip condition. The no-slip condition is
important in fluid mechanics. All fluids, including both gasses and lig-
uids, satisfy this condition.

Let the distance from the fixed plate to some arbitrary point above the
plate be y. The velocity Vof the fluid between the plates is a function of
the distance above the fixed plate A. To emphasize this we write

V= Viy)

The velocity of the fluid at any point between the plates varies linearly
between V = 0 and V = Vj. See Fig. 1.5.

Let us define the velocity gradient as the change in fluid velocity with
respect to y.

Velocity gradient = dVidy

The velocity profile is a graphical representation of the velocity gradi-
ent. See Fig. 1.5. For a linearly varying velocity profile like that shown
in Fig. 1.5, the velocity gradient can also be written as

Velocity gradient = Vg/h

1.2.2 Shear stress and viscosity

In cardiovascular fluid mechanics, shear stress is a particularly impor-
tant concept. Blood 1s a living fluid, and if the forces applied to the fluid
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Figure 1.5 Velocity profile in a fluid between two parallel plates.
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are sufficient, the resulting shearing stress can cause red blood cells to
be destroyved. On the other hand, studies indicate a role for shear stress
in modulating atherosclerotic plaques. The relationship between shear
stress and arterial disease has been studied much, but is not yvet very
well understood.

Figure 1.6 represents the shear stress on an element of the fluid at
some arbitrary point between the plates in Figs. 1.4 and 1.5. The shear
stress on the top of the element results in a force that pulls the element
“downstream.” The shear stress at the bottom of the element resists that
movement.

Since the fluid element shown will be moving at a constant velocity,
and will not be rotating, the shear stress on the element 7' must be the
same as the shear stress 7. Therefore,

dridy = 0and 74 = 75 = Tyan
Physically, the shearing stress at the wall may also be represented by

T4 = T = force/plate area

The shear stress on a fluid 1s related to the rate of shearing strain. If a
very large force is applied to the moving plate B, a relatively higher
velocity, a higher rate of shearing strain, and a higher stress will result.
In fact, the relationship between shearing stress and rate of shearing
strain is determined by the fluid property known as viscosity.

T dx
—
cly
T cx Figure 1.6 Shear stress on an
element of the fluid.
- o -
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1.2.3 Example problem: shear stress

Wall shear stress may be important in the development of various vas-
cular disorders. For example, the shear stress of circulating blood on
endothelial cells has been hypothesized to play a role in elevating vascular
transport in ocular diseases such as diabetic retinopathy.

In this example problem, we are asked to estimate the wall shear stress in
an arteriole in the retinal circulation. Gilmore et al. have published a related
paper in the American Journal of Physiology: Heart and Circulatory Physiology,
volume 288, in February 2005. In that article, the authors published the meas-
ured values of retinal arteriolar diameter and blood velocity in arterioles. For
this problem, we will use their published values: 80 pum for a vessel diameter
and 30 mm/s for mean retinal blood flow velocity. Later in Sec. 1.4.4, we will
see that, for a parabolic flow profile, a good estimate of the shearing rate is

where V,, is the mean velocity across the vessel cross section and D is the
vessel inside diameter.

We will also see in the next section that the shear stress 1s equal to the
viscosity multiplied by the rate of shearing strain, that is,

T = py
Therefore, to estimate the shear stress on the wall of a retinal arteriole, with
the data from Gilmore's paper, we can calculate

N
0.0035 — 8(3) = N
m 8
" D 0.008 cm = 1085
Although 10.5 Pa seems like a low shear stress when compared to the
strength of aluminum or steel, it 1s a relatively high shear stress when com-
pared to a similar estimate in the aorta, 0.5 Pa. See Table 1.1.

TABLE 1.1 Estimate of Wall Shear Stress in Various Vessels in the Human
Circulatory System

4
Shear stress,

Vesszel ID,em V,_,em/s  Shear rate’ N/m*
Aorta 2.5 48 154 0.5
Large arteriole” 0.05 1.4 224 0.8
Arteriole 0.008 3 3000 10.5
(retinal microcirculation®)
Capillary 0.0008 0.7 7000 24.5

MNote the increasing values for shear rate and shear stress as vessel inside diameter
decreases.




Transport Phenomena for BME / Lecture “3”
Assist. Lec. Samara Bashar Saeed

1.2.4 Viscosity

A common way to visualize material properties in fluids is by making a
plot of shearing stress as a function of the rate of shearing strain. For
the plot shown in Fig. 1.7, shearing stress is represented by the Greek
character 7, and the rate of shearing strain is represented by 7.

The material property that is represented by the slope of the
stress—shearing rate curve 1s known as viscosity and is represented by
the Greek letter p (mu). Viscosity is also sometimes referred to by the
name absolute viscosity or dynamic viscosity. For common fluids like oil,
water, and air, viscosity does not vary with shearing rate. Fluids with
constant viscosity are known as Newtonian fluids. For Newtonian fluids,
shear stress and rate of shearing strain may be related by the following
equation:

where + = shear stress
p = viscosity
v = the rate of shearing strain

For non-Newtonian fluids, r and y are not linearly related. For those
fluids, viscosity can change as a function of the shear rate (rate of
shearing strain). Blood is an important example of a non-Newtonian
fluid. Later in this book, we will investigate the condition under which
blood behaves as, and mayv be considered, a Newtonian fluid.

Qil
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Y™
Figure 1.7 Stress versus rate of shearing strain for
various fluids.
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Shear stress and shear rate are not linearly related for non-Newtonian
fluids. Therefore, the slope of the shear stress/shear rate curve is not con-
stant. However, we can still talk about viscosity if we define the appar-
ent viscosity as the instantaneous slope of the shear stress/shear rate
curve. See Fig. 1.8.

Shear thinning fluids are non-Newtonian fluids whose apparent vis-
cosity decreases as shear rate increases. Latex paint is a good example
of a shear thinning fluid. It is a positive characteristic of the paint that
the viscosity is low when one is painting, but that the viscosity becomes
higher and the paint sticks to the surface better when no shearing force
is present. At low shear rates, blood is also a shear thinning fluid.
However, when the shear rate increases above 100 s ', blood behaves as
a Newtonian fluid.

Shear thickening fluids are non-Newtonian fluids whose apparent
viscosity increases when the shear rate increases. Quicksand is a good
example of a shear thickening fluid. If one tries to move slowly in quick-
sand, then the viscosity is low and the movement is relatively easy. If
one tries to move guickly, then the viscosity increases and the movement
is difficult. A mixture of cornstarch and water also forms a shear thick-
ening non-Newtonian fluid.

A Bingham plastic is neither a fluid nor a solid. A Bingham plastic can
withstand a finite shear load and flow like a fluid when that shear
stress 1s exceeded. Toothpaste and mayonnaise are examples of Bingham
plastics. Blood is also a Bingham plastic and behaves as a solid at shear
rates very close to zero. The yield stress for blood is very small, approx-
imately in the range from 0.005 to 0.01 N/m”.

Kinematic viscosity is another fluid property that has been used to
characterize flow. It is the ratio of absolute viscosity to fluid density and

plastic
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Figure 1.8 Shear stress versus rate of shearing strain for some non-
Newtonian fluids.
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1.3 Fundamental Method for Measuring
Viscosity

A fundamental method for measuring viscosity involves a viscometer
made from concentric cylinders. See Fig. 1.9. The fluid for which the vis-
coslity 1s to be measured 1s placed between the two cylinders. The torque
generated on the inner fixed cylinder by the outer rotating cylinder is
determined by using a torgque-measuring shaft. The force required to
cause the cylinder to spin and the velocity at which it spins are also
measured. Then the viscosity may be calculated in the following way:
The shear stress 7 in the fluid is equal to the force Fapplied to the outer
cylinder divided by the surface area A of the internal cylinder, that is,
F

T = —

A

The shear rate v for the fluid in the gap, between the cylinders, may also
be calculated from the velocity of the cylinder, V, and the gap width h as

'}":h

N
)

Fixed
cylinder

¢

Section A-A

Figure 1.9a Cross section of a rotating cyvlinder
viscometer.
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Figure 1.9b Rotating cylinder
viscometer.

From the shear stress and the shear rate, the viscosity and/or the kine-
matic velocity may be obtained as

-
==

— and v =
Y

© &

where u = viscosity
v = kinematic viscosity
p = density

A typical value for blood viscosity in humans is 0.0035 Ns/m?, or 0.035
poise (P), or 3.5 cP. Note that 1 P = 1 dyne s/lcm?, or 0.1 Ns/m”. Another
useful pressure unit conversion is that 1 mmHg = 133.3 N/m”.

Let T represent the measured torque in the viscometer shaft, and @
is its angular velocity in rad/s. Assume that D is the radius of the inner
viscosimeter cylinder, and L is its length. The fluid velocity at the inner
surface is

D
V= w;

It can be shown that

e~

I

S
i~
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leading to an equation which relates the torque, the angular veloeity, and
the geometric parameters of the device.

B 4T h
H_ﬂﬂﬁLw

1.3.1 Example problem: viscosity
measurement

Whole blood (assume p = 0.0035 stm2) is placed in a concentric cylinder vis-
cometer. The gap width is 1 mm and the inner cylinder radius is 30 mm.
Estimate the wall shear stress in the fluid. Assume the angular velocity of
the outer cylinder to be 60 rpm.

We can begin by calculating the shear rate based on the angular velocity
of the eylinder, its radius, and the gap between the inner and outer eylinders.
The shear rate is equal to the velocity of the outer cylinder multiplied by
the gap between the cylinders (see Fig. 1.9a). That is,

S X
YT
The wall shear stress is equal to the viscosity multiplied by the shear rate.
Thus,
31 7 \rad
——— m(60) | -~ |—
. plrw) Ns (IUUU) (30) s N
= = = N _ 3 . 2_
TR h 0003573 (1/1000)m 068272

Revnolds Number:

The Reynolds number is a dimensionless parameter named after
Professor Reynolds. The number is defined as

-~ pVD
In

Re

where p = fluid density in kg/m”
V' = fluid velocity in m/s
D = pipe diameter in m
u = fluid viscosity in Ns/m”

Unless otherwise specified, this V will be considered to be the average
velocity across the pipe cross section. Physically, the Reyvnolds number
represents the ratio of inertial forces to viscous forces.

The Reynolds number helps us to predict the transition between lam-
inar and turbulent flows. Laminar flow is highly organized flow along
streamlines. As velocity increases, flow can become disorganized and
chaotic with a random 3-D motion superimposed on the average flow
velocity. This is known as turbulent flow. Laminar flow occurs in flow
environments where Re < 2000. Turbulent flow is present in circum-
stances under which Re > 4000. The range of 2000 < Re < 4000 is
known as the transition range.

The Reyvnolds number is also useful for predicting entrance length in
pipe flow. I will denote the entrance length as Xy The ratio of entrance

10
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length to pipe diameter for laminar pipe flow is given as

X
E’-"' = (.06 Re

Consider the following example: If Re = 300, then X; = 18 D, and an
entrance length equal to 18 pipe diameters 1s required for fully developed
flow. In the human cardiovascular system, it is not common to see fully
developed flow in arteries. Typically, the vessels continually branch, with
the distance between branches not often being greater than 18 pipe
diameters.

Although most blood flow in humans is laminar, having a Re of 300
or less, it 1s possible for turbulence to occur at very high flow rates in
the descending aorta, for example, in highly conditioned athletes.
Turbulence is also common in pathological conditions such as heart
murmurs and stenotic heart valves.

Stenotic comes from the Greek word “stenos,” meaning narrow.
Stenotic means narrowed, and a stenotic heart valve 1s one in which the
narrowing of the valve is a result of the plagque formation on the valve.

1.42 Example problem:
Reynolds number

Estimate the Reynolds number for blood flow in a retinal arteriole, using
the published values from Gilmore et al. Assume that the blood density is
1060 kg/m”. Is there any concern that blood flow in the human retina will
become turbulent?

From Table 1.1, we see that the inside diameter of the arteriole is 0.008 cm,
the mean velocity in the vessel i1s 3 cm/s, and the viscosity measured as 0.0035
Ns/m”. The Reynolds number can be calculated as

k o 0.008
1060 ~& m

VD 3100 s 100
Re = 2= = = SNS = 0.73
o 0.0035 —
Im

For this flow condition, the Reynolds number is far, far less than 2000, and
there i1s no danger of the flow becoming turbulent.

11
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Newton’s law of viscosity
T=pn- dul/dy
where, 1= shear stress
M: viscosity
du/dy: rate of shear deformation

Kinematic viscosity

v=u/p
where, v: kinematic viscosity
M dynamic viscosity
p: density of fluid

Example: If the velocity distribution over a plate is given by u= 2y/3 — ¥? in

which u is the velocity in meters per second at a distance y meter above the

plate. Determine the shear stress at y=0 and y=0.15m. Take the dynamic
viscosity of the fluid as 0.863 N.s/ m?.
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