

Engineering Mechanics

Al-Mustaqbal University College

3.2 Equilibrium of Coplanar Concurrent Force system

The resultant of coplanar concurrent force system is:

$$R = \sqrt{{R_x}^2 + {R_y}^2}$$

To achieve the equilibrium, the resultant must be equal to zero (i.e. R=0), then:

$$R_y = 0 \qquad \Longrightarrow \qquad \sum F_y = 0 \dots \dots \dots \dots \dots (2)$$

Only two unknowns can be determined

Example No. 1: Determine the force (F) in the figure below which must be applied to ring A in order to keep the 300 N cylinder B in equilibrium.

Solution:

Draw F.B.D. for Ring (A) and cylinder (B):

Dr. Mohammed Zuhair & Dr. Mayadah W.

at cylinder (B):

$$\to^+ \sum F_{x} = 0$$

$$N \times \frac{3}{5} - T_1 \times \frac{4}{5} = 0$$

$$N = 1.333 T_1 \dots \dots \dots \dots (1)$$

$$\uparrow^+ \sum F_y = 0$$

$$N \times \frac{4}{5} + T_1 \times \frac{3}{5} - 300 = 0$$

$$1.333 \, T_1 \times \frac{4}{5} + T_1 \times \frac{3}{5} = 300$$

$$\therefore T_1 = 180 \, N$$

at Ring (A):

$$\uparrow^+ \sum F_y = 0$$

$$-180 \times \frac{3}{5} + T_2 \times \frac{12}{13} = 0$$

$$\therefore T_2 = 117 N$$

$$\to^+ \sum F_x = 0$$

$$180 \times \frac{4}{5} + 117 \times \frac{5}{13} - F = 0$$

$$\therefore F = 189 N \leftarrow answer$$

Example No. 2: The 290 N pipe is supported at A by a system of five-cords. Determine the force in each cord for equilibrium.

Solution:

Draw F.B.D. for system:

From F.B.D. of Ring A:

$$\uparrow^+ \sum F_y = 0$$

$$T_{AB}\sin 60 - 290 = 0$$
 \rightarrow $T_{AB} = \frac{290}{\sin 60}$

$$\therefore T_{AB} = 334.86 \, N \qquad answer$$

$$\to^+ \sum F_x = 0$$

$$T_{AE} - 334.86 \times \cos 60 = 0$$

$$T_{AE} = 167.43 N$$
 answer

From F.B.D. of Ring B:

$$\uparrow^+ \sum F_y = 0$$

$$T_{BD} \times \frac{3}{5} - 334.86 \times \sin 60 = 0$$

$$\therefore T_{BD} = 483.33 \, N \qquad answer$$

$$\rightarrow^+ \sum F_x = 0$$

$$483.33 \times \frac{4}{5} + 334.86 \times \cos 60 - T_{BC} = 0$$

$$T_{BC} = 554.094 N$$
 answer

Problem:

1. Determine the tension developed in each cord required for equilibrium of the 20 kg lamp.

Answer: $T_{DE} = 392.4 N$, $T_{CD} = 339.83 N$, $T_{CB} = 274.62 N$, $T_{CA} = 242.73 N$

2. A system of cables connected together at A required for equilibrium of the 20 kg ball D as shown in the figure. Determine the largest dimension d so that the force in cable AC is zero and F = 100 N.

Answer: $d = 2.42 \, m$

3. Determine the force in each rod for equilibrium of the 250 N crate.

Answer: $T_{AB} = 500 N$, $T_{CB} = 433.33 N$