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1. Double integral

The definite integral can be extended to z

= f(x,
functions of more than one variable. Consider, for == 1
example, a function of two variables z = f (X, y). o _— '

The double integral of function f (X, y) is denoted
by J
ITFxy) o~

Figure 1
Where R is the region of integration in the xy-plane.

b
The definite integral I £ Geydx of a function of one variable f(x) > 0 is the arca under the
curve f(x) from x=a to x=b, then the double integral is equal to the volume under the surface

z=f (X, y) and above the xy-plane in the region of integration R (Figure 1).

a- Properties of double integral
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If f(x, y) and g(x, y) are continuous on the bounded region R, then the following
properties hold.

1. Constant Multiple: // cf(x,y)dA = ¢ // f(x,y)dA (any number c)
R R

2. Sum and Difference:

// (fx,y) T g(x,y) dA = // fx,y)dA * // g(x,y) dA
R R R

3. Domination:

(a) _//f(L y)dA = 0 if f(x,y) = 0onR
R

(b) //f(x.,v)dA = //g(x,y) dA if  f(x,y) = g(x,y)onR
R R
4. Additivity: // fx,y)dA = // f(x,y)dA + // f(x,y)dA
R R, R,

if R 1s the union of two nonoverlapping regions R, and R,

b- Cartesian form

Double integral of f(x,y) over the region R is denoted by:.
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d px2
f F(x,y) dx dy

x1

H F(x,y)dA :ﬂ F(x,y) dx dy =f

C
R
or

ﬂ F(x,y)dA :ﬂ F(x,y) dy dx :jbfyzF(x,y) dy dx

a Iyl
R R y

C- Finding Limits of Integration in Cartesian form

O Using Vertical Cross-SectionsO

When faced with evaluating ff (), integrating first with respect to y and then with
respect to X, do the following three steps: 1- Sketch. Sketch the region of integration and
label the bounding curves. (Figure 3 a).

2- Find the y-limits of integration. Imagine a vertical line L cutting through R in the
direction of increasing y. Mark the y-values where L enters and leaves. These are the y-

limits of integration and are usually functions of x (instead of constants) (Figure 3
b).

3- Find the x-limits of integration. Choose x-limits that include all the vertical lines
through R. The integral shown here (see Figure 3 ¢) is
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x=1 py=V1-22
// flx,y)dA = / / f(x, y) dy dx.
R x=0 Jy=1-x
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0 Using Horizontal Cross-SectionsO

To evaluate the same double integral as an iterated integral with the order of integration
reversed, use horizontal lines instead of vertical lines in Steps 2 and 3 (see Figure 4). The

1 pVi1-y?
// fx,y)dA = / / f(x,y) dx dy.
R 0Jl1l-y

integra

Largest y A‘k
=l Enters at

Ysed x=1—-y
v >

. N\ o
Smallest y Leaves at :
isy=0 -\'=\/l—_\'

. > X

0 1







