Radiation Protection

LECTURE FOUR

Units of Radiation Protection

30/28 University

Prof. Dr Anees Al-Jubouri

2025-2024

LECTURE FOUR: Units of Radiation Protection

Rad (radiation absorbed dose) One

Rem (Roentgen equivalent man) Two sience. H. Mustadoal University

Three -Gray (Gy)

Sievert (Sv) Four

Curie (Ci) Five

Six Becquerel (Bq)

Disintegrations per second (dps) Seven -Medical Physics Department Co

LECTURE FOUR: Units of Radiation Protection

- One Rad (radiation absorbed dose)
 - 1 Rad is a unit of **absorbed dose** of radiation.
 - 2 Rad unit is a measure of the amount of energy deposited in tissue
 - 4 Rad unit can be used for any type of radiation.
 - **5-** Rad unit dose not **describe the biological effects on** the human body of the different radiations due to the weighting factor of radiation type Q.

Dose: it is a quantity of a radiation or drug taken or recommended to be taken at one time.

Radiation weighting factor: is a factor used to determine the equivalent dose from the absorbed dose averaged over a tissue or organ based on the type of radiation absorbed.

- Two Rem (Roentgen equivalent man)
 - 1- Rem unit is used to **measure biological effects** on the human body.
 - **2-** Rem unit is a unit that measures the low **levels** of different types of ionizing radiation.
 - **3-** Rem is a unit of **equivalent absorbed dose** of radiation which takes into account the biological effects.
 - 4- The dose in rem equals the dose in rad multiplied by the quality factor (Q).

LECTURE FOUR. Units of Radiation Protection

Quality Factor (Q): It is a factor used in radiation protection to weight the absorbed dose.

Examples

For Beta and Gamma radiation, the Q = 1 so, the rem = \mathbf{rad} so, the rem = $\mathbf{20}$ rad

- 1- Gray unit represents the measured absorbed dose from exposure to radiation.
- 2- Gray is a measure of energy deposition in tissue.
- **3-** A dose of one Gy is equivalent to a unit of energy (joule) deposited in a kilogram of material.
- **4-** A Gray unit of absorbed radiation dose equal to 100 rad.

$$1 \text{ Gy} = 100 \text{ rad} = 1 \text{ joule/kg}$$

LECTURE FOUR: Units of Radiation Protection

❖ Four - Sievert (Sv)

Sievert (Sv): It is unit used to measure dose quantities of radiation such as;

- (i) Equivalent dose
- (ii) Effective dose.

Equivalent dose

- It represents the **biological effects of low levels of ionizing radiation** on the human body.
- It represents the **probability of radiation-induced cancer and genetic**damage.

Effective dose

It is a **dose quantity** in the International Commission on Radiological Protection (ICRP) system of radiological protection

- Five Curie (Ci)
- 1- Curie (Ci) is **traditional unit** of radioactivity.
- 2- Curie is unit used to measure the **number of decays per second**.
- 3- Curie is equal to the radioactivity of one gram (1g) of pure radium-226.

LECTURE FOUR: Units of Radiation Protection

❖ Six - Becquerel (Bq)

The standard international unit of radioactivity equal to **one decay per second**.

1 Becquerel (Bq) = 27 Picocurie (pCi)

Seven – Disintegrations per second (dps)

Disintegrations per second (dps): The unit represents the number of subatomic particles (alpha particles & alfa partical) or photons (gamma rays) which released from the nucleus of a given atom over one second.

$$1 \text{ dps} = 1 \text{ Bq}$$

Bubble sheet questions

Q1- Rad unit dose not describe the biological effects on the human body of the different radiations due to the ------

A-Dose B-weighting factor C-weight the absorbed dose D-energy deposition E-none of them

Q2- Rem unit is a unit that measures the ----- of different types of ionizing radiation.

A- measure biological effects B-low levels C-high levels D-A&B E-B&C

		un	it is a	measure	of the amo	ount of	energy	y deposited	
in tis	sue.								
A-	rad	B- re	em	C- gray	D-	sievert		E- curie	
Q4- I	Rad unit re	presen	ts the	absorpti	on of			for each	
gram								Lx.	
•	1 joule/kg	В	- 10	⁻⁷ joule	C- 100 er	gs	D- 1	Becquerel	
E- 27	Picocurie					×	,0031	2012	
<u>Q5-</u>]	The dose in	rem eq	uals th	ne dose in	n rad multip	olied by	the		
A-qu	uality factor	B-	equiv	alent abs	orbed dose	C- d	ose	D-	
ener	gy depositio	Е	- num	ber of de	cays per se	cond			

Q6- Sievert (Sv): It is unit used to measure dose quantities of radiation such as ------.

A-quality factor B- biological effects C- genetic damage D- equivalent dose E- energy deposition in tissue