

Magnetic

lec 1

Dr. Rusul Abdul Ameer

The B-field

A charged particle that is moving with velocity \mathbf{v} in a magnetic field \mathbf{B} will feel a magnetic force \mathbf{F} . Since the magnetic force always pulls sideways to the direction of motion, the particle moves in a circle.

The magnetic field vector \mathbf{B} at any point can be defined as the vector that, when used in the Lorentz force law, correctly predicts the force on a charged particle at that point

The first term in the Lorentz equation is from the theory of electrostatics, and says that a particle of charge q in an electric field \mathbf{E} experiences an electric force: Fe= q E

The second term is the magnetic force

$$Fm = q (VXB) = q*V B Sin \theta$$

Using the definition of the cross product, the magnetic force can also be written as a scalar equation:

where $F_{\rm magnetic}$, v, and B are the scalar magnitude of their respective vectors, and θ is the angle between the velocity of the particle and the magnetic field. The vector ${\bf B}$ is *defined* as the vector field necessary to make the Lorentz force law correctly describe the motion of a charged particle.