

P a g e | 1 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

العلومكلية
ة ـيـبـطــــة الــــمــــظـــن الانــــــــــســق

ةـــيــــــذكـــال

Lecture: (4)

Software Analysis and Design using OOP Techniques
Subject: Object oriented programming I
Class: Second
Lecturer: Dr. Maytham N. Meqdad

P a g e | 2 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

Software Analysis and Design using OOP

Techniques

Object-Oriented Analysis and Design(OOAD)

Object-Oriented Analysis and Design (OOAD) is a software engineering methodology that employs

object-oriented principles to model and design complex systems. It involves analyzing the problem

domain, representing it using objects and their interactions, and then designing a modular and scalable

solution. It helps create systems that are easier to understand, maintain, and extend by organizing

functionality into reusable and interconnected components.

Important Aspects of OOAD

Here are some important aspects of OOAD:

 Object-Oriented Programming: Object-oriented programming involves modeling real-

world objects as software objects, with properties and methods that represent the

behavior of those objects. OOAD uses this approach to design and implement software

systems.

P a g e | 3 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

 Design Patterns: Design patterns are reusable solutions to common problems in software

design. OOAD uses design patterns to help developers create more maintainable and

efficient software systems.

 UML Diagrams: Unified Modeling Language (UML) is a standardized notation for

creating diagrams that represent different aspects of a software system. OOAD uses UML

diagrams to represent the different components and interactions of a software system.

 Use Cases: Use cases are a way of describing the different ways in which users interact

with a software system. OOAD uses use cases to help developers understand the

requirements of a system and to design software systems that meet those requirements.

Object-Oriented Analysis

Object-Oriented Analysis (OOA) is the first technical activity performed as part of object-

oriented software engineering. OOA introduces new concepts to investigate a problem. It is

based on a set of basic principles, which are as follows:

 The information domain is modeled:

o Lets say you’re building a game. OOA helps you figure out all the things you

need to know about the game world – the characters, their features, and how they

interact. It’s like making a map of everything important.

 Behavior is represented:

o OOA also helps you understand what your game characters will do. If a character

jumps when you press a button, OOA helps describe that action. It’s like writing

down a script for each character.

 The function is described:

o Every program has specific tasks or jobs it needs to do. OOA helps you list and

describe these jobs. In our game, it could be tasks like moving characters or

keeping score. It’s like making a to-do list for your software.

 Data, functional, and behavioral models are divided to uncover greater detail:

o OOA is smart about breaking things into different parts. It splits the job into three

categories: things your game knows (like scores), things your game does (like

jumping), and how things in your game behave (like characters moving around).

This makes it easier to understand.

P a g e | 4 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

 Starting Simple, Getting Detailed:

o OOA knows that at first, you just want to understand the big picture. So, it starts

with a simple version of your game or program. Later on, you add more details to

make it work perfectly. It’s like sketching a quick drawing before adding all the

colors and details.

Object-Oriented Design

In the object-oriented software development process, the analysis model, which is initially

formed through object-oriented analysis (OOA), undergoes a transformation during object-

oriented design (OOD). This evolution is crucial because it shapes the analysis model into a

detailed design model, essentially serving as a blueprint for constructing the software.

The outcome of object-oriented design, or OOD, manifests in a design model characterized by

multiple levels of modularity. This modularity is expressed in two key ways:

 Subsystem Partitioning:

o At a higher level, major components of the system are organized into subsystems.

o This practice is similar to creating modules at the system level, providing a

structured and organized approach to managing the complexity of the software.

 Object Encapsulation:

o A more granular form of modularity is achieved through the encapsulation of data

manipulation operations into objects. ” It’s like putting specific tasks (or

operations) and the data they need into little boxes called “objects.”

o Each object does its job neatly and keeps things organized. So, if our game has a

character jumping, we put all the jumping stuff neatly inside an object.

o It’s like having a box for each task, making everything easier to handle and

understand.

Furthermore, as part of the object-oriented design process, it is essential to define specific

aspects:

 Data Organization of Attributes:

P a g e | 5 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

o OOD involves specifying how data attributes are organized within the objects.

This includes determining the types of data each object will hold and how they

relate to one another, ensuring a coherent and efficient data structure.

 Procedural Description of Operations:

o OOD requires a procedural description for each operation that an object can

perform. This involves detailing the steps or processes involved in carrying out

specific tasks, ensuring clarity and precision in the implementation of

functionality.

Below diagram shows a design pyramid for object-oriented systems. It is having the following

four layers.

1. The Subsystem Layer: It represents the subsystem that enables software to achieve user

requirements and implement technical frameworks that meet user needs.

2. The Class and Object Layer: It represents the class hierarchies that enable the system to

develop using generalization and specialization. This layer also represents each object.

3. The Message Layer: This layer deals with how objects interact with each other. It

includes messages sent between objects, method calls, and the flow of control within the

system.

P a g e | 6 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

4. The Responsibilities Layer: It focuses on the responsibilities of individual objects. This

includes defining the behavior of each class, specifying what each object is responsible

for, and how it responds to messages.

Benefits of Object-Oriented Analysis and Design(OOAD)

 Improved modularity: OOAD encourages the creation of small, reusable objects that

can be combined to create more complex systems, improving the modularity and

maintainability of the software.

 Better abstraction: OOAD provides a high-level, abstract representation of a software

system, making it easier to understand and maintain.

 Improved reuse: OOAD encourages the reuse of objects and object-oriented design

patterns, reducing the amount of code that needs to be written and improving the quality

and consistency of the software.

 Improved communication: OOAD provides a common vocabulary and methodology

for software developers, improving communication and collaboration within teams.

 Reusability: OOAD emphasizes the use of reusable components and design patterns,

which can save time and effort in software development by reducing the need to create

new code from scratch.

 Scalability: OOAD can help developers design software systems that are scalable and

can handle changes in user demand and business requirements over time.

 Maintainability: OOAD emphasizes modular design and can help developers create

software systems that are easier to maintain and update over time.

 Flexibility: OOAD can help developers design software systems that are flexible and can

adapt to changing business requirements over time.

 Improved software quality: OOAD emphasizes the use of encapsulation, inheritance,

and polymorphism, which can lead to software systems that are more reliable, secure, and

efficient.

Challenges of Object-Oriented Analysis and Design(OOAD)

 Complexity: OOAD can add complexity to a software system, as objects and their

relationships must be carefully modeled and managed.

P a g e | 7 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

 Overhead: OOAD can result in additional overhead, as objects must be instantiated,

managed, and interacted with, which can slow down the performance of the software.

 Steep learning curve: OOAD can have a steep learning curve for new software

developers, as it requires a strong understanding of OOP concepts and techniques.

 Complexity: OOAD can be complex and may require significant expertise to implement

effectively. It may be difficult for novice developers to understand and apply OOAD

principles.

 Time-consuming: OOAD can be a time-consuming process that involves significant

upfront planning and documentation. This can lead to longer development times and

higher costs.

 Rigidity: Once a software system has been designed using OOAD, it can be difficult to

make changes without significant time and expense. This can be a disadvantage in rapidly

changing environments where new technologies or business requirements may require

frequent changes to the system.

 Cost: OOAD can be more expensive than other software engineering methodologies due

to the upfront planning and documentation required.

Real world applications of Object-Oriented Analysis and

Design(OOAD)

Object-Oriented Analysis and Design (OOAD) has been widely applied across various industries

to improve software development processes, enhance maintainability, and promote code

reusability. Here are some real-world applications of OOAD:

1. Financial Systems: Banking Software: OOAD is often employed in banking systems to

model complex financial structures, transactions, and customer interactions. The modular

and scalable nature of OOAD helps in designing flexible and robust banking applications.

2. Healthcare Systems: Electronic Health Record (EHR) Systems: OOAD is utilized to

model patient data, medical records, and healthcare workflows. Object-oriented

principles enable the creation of modular and adaptable healthcare applications that can

evolve with changing requirements.

3. Aerospace and Defense: Flight Control Systems: OOAD is crucial in designing flight

control systems for aircraft. It helps model the interactions between different components

such as navigation systems, sensors, and control surfaces, ensuring safety and reliability.

P a g e | 8 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

4. Telecommunications: Telecom Billing Systems: OOAD is applied to model and design

billing systems in the telecommunications industry. It allows for the representation of

complex billing rules, subscription plans, and customer data in a modular and scalable

way.

5. E-commerce: Online Shopping Platforms: OOAD is commonly used in the development

of e-commerce systems. It helps model product catalogs, user profiles, shopping carts,

and payment processes, making it easier to maintain and extend the functionality of the

platform.

Here is the rephrased Python code along with an explanation in English:

Python Code (Object-Oriented Design Example)

Define the Student class

class Student:

 def __init__(self, student_id, name, age):

 self.student_id = student_id

 self.name = name

 self.age = age

 self.courses = [] # List to store the courses the student is

enrolled in

 # Method to enroll the student in a course

 def enroll(self, course):

 self.courses.append(course)

 print(f"{self.name} has enrolled in {course.course_name}")

 # Method to list all courses the student is enrolled in

 def list_courses(self):

 print(f"{self.name} is enrolled in the following courses:")

 for course in self.courses:

 print(f"- {course.course_name}")

Define the Course class

class Course:

 def __init__(self, course_id, course_name, instructor):

 self.course_id = course_id

 self.course_name = course_name

 self.instructor = instructor

 # Method to get information about the course

 def get_info(self):

 return f"Course: {self.course_name}, Instructor: {self.instructor}"

P a g e | 9 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

Define the Instructor class

class Instructor:

 def __init__(self, instructor_id, name):

 self.instructor_id = instructor_id

 self.name = name

 # Method to return the instructor's name

 def get_name(self):

 return self.name

Create some instructors

instructor1 = Instructor(1, "Dr. Ali")

instructor2 = Instructor(2, "Dr. Fatima")

Create some courses

course1 = Course(101, "Math", instructor1.get_name())

course2 = Course(102, "Physics", instructor2.get_name())

Create some students

student1 = Student(1, "Ahmed", 20)

student2 = Student(2, "Sara", 22)

Enroll students in courses

student1.enroll(course1)

student1.enroll(course2)

student2.enroll(course2)

List the courses each student is enrolled in

student1.list_courses()

student2.list_courses()

Display information about the courses

print(course1.get_info())

print(course2.get_info())

https://www.programiz.com/online-compiler/2LhqrWDu2S6tQ

- Code Explanation
1. **Class `Student`**:

 - The `Student` class represents a student with attributes such as `student_id`, `name`, and `age`. It also contains a

list to store the courses that the student is enrolled in.

 - The `enroll()` method allows a student to enroll in a course, adding it to their list of courses.

 - The `list_courses()` method prints all the courses the student is enrolled in.

2. **Class `Course`**:

 - The `Course` class represents a course with attributes like `course_id`, `course_name`, and the name of the

`instructor`.

https://www.programiz.com/online-compiler/2LhqrWDu2S6tQ

P a g e | 10 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

 - The `get_info()` method returns information about the course, including its name and instructor.

3. **Class `Instructor`**:

 - The `Instructor` class represents an instructor with attributes like `instructor_id` and `name`.

 - The `get_name()` method returns the instructor's name.

4. **Creating Objects**:

 - Two instructors are created, `Dr. Ali` and `Dr. Fatima`.

 - Two courses are created: "Math" taught by `Dr. Ali` and "Physics" taught by `Dr. Fatima`.

 - Two students, `Ahmed` and `Sara`, are created with their respective details.

5. **Enrollment**:

 - `Ahmed` is enrolled in both the "Math" and "Physics" courses.

 - `Sara` is enrolled in the "Physics" course.

6. **Displaying Information**:

 - The courses each student is enrolled in are listed.

 - The course information (course name and instructor) is displayed.

Expected Output:
Ahmed has enrolled in Math

Ahmed has enrolled in Physics

Sara has enrolled in Physics

Ahmed is enrolled in the following courses:

- Math

- Physics

Sara is enrolled in the following courses:

- Physics

Course: Math, Instructor: Dr. Ali

Course: Physics, Instructor: Dr. Fatima

This example demonstrates how Object-Oriented Analysis and Design (OOAD) principles can be applied to create a

basic system for managing students, courses, and instructors. Each class is responsible for specific tasks, making the

code modular and easy to maintain.

- object-oriented Python program **Library Management System**.

This program will manage books, library members, and the borrowing

process.

Library Management System Example in Python

Define the Book class

class Book:

 def __init__(self, title, author, isbn, available=True):

 self.title = title

 self.author = author

P a g e | 11 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

 self.isbn = isbn

 self.available = available # Book availability status

 # Method to mark a book as borrowed

 def borrow(self):

 if self.available:

 self.available = False

 return True

 return False

 # Method to mark a book as returned

 def return_book(self):

 self.available = True

 # Method to get book info

 def get_info(self):

 status = "Available" if self.available else "Not Available"

 return f"Title: {self.title}, Author: {self.author}, ISBN:

{self.isbn}, Status: {status}"

Define the Member class

class Member:

 def __init__(self, member_id, name):

 self.member_id = member_id

 self.name = name

 self.borrowed_books = [] # List to store borrowed books

 # Method to borrow a book

 def borrow_book(self, book):

 if book.borrow():

 self.borrowed_books.append(book)

 print(f"{self.name} has borrowed the book '{book.title}'.")

 else:

 print(f"Sorry, the book '{book.title}' is not available.")

 # Method to return a book

 def return_book(self, book):

 if book in self.borrowed_books:

 book.return_book()

 self.borrowed_books.remove(book)

 print(f"{self.name} has returned the book '{book.title}'.")

 else:

 print(f"{self.name} hasn't borrowed the book '{book.title}'.")

 # Method to list all borrowed books

 def list_borrowed_books(self):

 if self.borrowed_books:

 print(f"{self.name} has borrowed the following books:")

 for book in self.borrowed_books:

 print(f"- {book.title}")

 else:

 print(f"{self.name} has not borrowed any books.")

P a g e | 12 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

Define the Library class

class Library:

 def __init__(self, name):

 self.name = name

 self.books = [] # List to store all books in the library

 # Method to add a book to the library

 def add_book(self, book):

 self.books.append(book)

 print(f"The book '{book.title}' has been added to the library.")

 # Method to list all books in the library

 def list_books(self):

 print(f"Books available in {self.name} library:")

 for book in self.books:

 print(book.get_info())

Creating the library

library = Library("Central Library")

Adding books to the library

book1 = Book("The Great Gatsby", "F. Scott Fitzgerald", "1234567890")

book2 = Book("To Kill a Mockingbird", "Harper Lee", "2345678901")

book3 = Book("1984", "George Orwell", "3456789012")

library.add_book(book1)

library.add_book(book2)

library.add_book(book3)

Creating library members

member1 = Member(1, "Alice")

member2 = Member(2, "Bob")

Members borrowing books

member1.borrow_book(book1)

member1.borrow_book(book2)

member2.borrow_book(book2) # This book is already borrowed by Alice

Listing borrowed books for each member

member1.list_borrowed_books()

member2.list_borrowed_books()

Returning a book

member1.return_book(book1)

member2.borrow_book(book1) # Now Bob can borrow it

Listing all books in the library

library.list_books()

https://www.programiz.com/online-compiler/1jRCukOBHv9OC

Code Explanation

https://www.programiz.com/online-compiler/1jRCukOBHv9OC

P a g e | 13 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

1. **Class `Book`**:

 - This class represents a book with attributes like `title`, `author`, and `isbn`. It also has a `available` attribute to

track whether the book is available for borrowing.

 - The `borrow()` method marks the book as borrowed, and `return_book()` marks it as returned.

 - The `get_info()` method returns information about the book including its availability status.

2. **Class `Member`**:

 - This class represents a library member with a `member_id` and `name`.

 - It has a list `borrowed_books` to track the books borrowed by the member.

 - The `borrow_book()` method allows the member to borrow a book, while `return_book()` allows the member to

return a book.

 - The `list_borrowed_books()` method prints all books borrowed by the member.

3. **Class `Library`**:

 - The `Library` class represents the library itself, with a name and a list of books.

 - It has methods to `add_book()` to add books to the library and `list_books()` to list all books with their status.

4. **Creating Objects**:

 - A library named "Central Library" is created, and books such as "The Great Gatsby", "To Kill a Mockingbird",

and "1984" are added to it.

 - Members "Alice" and "Bob" are created.

5. **Borrowing and Returning**:

 - Alice borrows two books, and Bob tries to borrow a book that Alice already has, which isn’t allowed.

 - Alice returns one book, and Bob successfully borrows it afterward.

6. **Displaying Library Status**:

 - The library lists all the books and their availability status.

Expected Output:

The book 'The Great Gatsby' has been added to the library.

The book 'To Kill a Mockingbird' has been added to the library.

The book '1984' has been added to the library.

Alice has borrowed the book 'The Great Gatsby'.

Alice has borrowed the book 'To Kill a Mockingbird'.

Sorry, the book 'To Kill a Mockingbird' is not available.

Alice has borrowed the following books:

- The Great Gatsby

- To Kill a Mockingbird

Bob has not borrowed any books.

Alice has returned the book 'The Great Gatsby'.

Bob has borrowed the book 'The Great Gatsby'.

Books available in Central Library library:

Title: The Great Gatsby, Author: F. Scott Fitzgerald, ISBN: 1234567890, Status: Not Available

Title: To Kill a Mockingbird, Author: Harper Lee, ISBN: 2345678901, Status: Not Available

Title: 1984, Author: George Orwell, ISBN: 3456789012, Status: Available

This program demonstrates another practical example of Object-Oriented Design where classes and methods are

used to simulate real-world operations of a library system.

