$P = \rho g h$ (where h is depth of the surface)

Table (3.1) The moments of inertia and other geometric properties of some important plane surfaces .

Plane surface	C.G. from the	Area	Moment of inertia about an axis passing through C.G. and parallel to base (I_G)	Moment of inertia about base (1 ₀)
1. Rectangle				
G d	$x = \frac{d}{2}$	bd	$\frac{bd^3}{12}$	$\frac{bd^3}{3}$
2. Triangle				Design of the second se
h x b	$x = \frac{h}{3}$	$\frac{bh}{2}$	$\frac{bh^3}{36}$	$\frac{bh^3}{12}$

Contd...

Plane surface	C.G. from the base	Area	Moment of inertia about an axis passing through C.G. and parallel to base (I_G)	Moment of inertia about base (I ₀)
3. Circle	$x = \frac{d}{2}$	$\frac{\pi d^2}{4}$	$\frac{\pi d^4}{64}$	_
4. Trapezium				The state of the s
b x	$x = \left(\frac{2a+b}{a+b}\right)\frac{h}{3}$	$\frac{(a+b)}{2} \times h$	$\left(\frac{a^2 + 4ab + b^2}{36(a+b)}\right) \times h^3$	

3.3 / Inclined Plane surface submerged in liquid:

Consider a plane surface of arbitrary shape immersed in a liquid in such a way that the plane of the surface makes an angle Θ with the free surface of the liquid as shown in Fig.(3.2).

Fig.(3.2) Inclined immersed surface

Let , A total area of inclined surface , h_c depth of C.G of inclined area from free surface , h_p distance of center of pressure from free surface of liquid , Θ angle made by the plane of the surface with free surface , y_c distance of the C.G of the inclined surface from O-O , y_p distance of the center of pressure from the O-O.

Consider a small strip of area dA at a depth (h) from free surface and at a distance y from the axis O - O as shown in Fig. (3.2).

Force dF on the strip = $p \times Area$ of strip = $p \cdot g \cdot h \times dA$

Total Force on the whole area , $F = \int dF = \int \rho g h dA$

But from Fig.(3.2),
$$\sin\Theta = \frac{h}{y} = \frac{h_c}{y_c} = \frac{h_p}{y_p}$$

Therefore, $h = y \sin \Theta$

$$\mathbf{F} = \int \rho \, \mathbf{g} \times \mathbf{y} \, \sin \Theta \times \mathbf{dA} = \rho \, \mathbf{g} \, \sin \Theta \int \mathbf{y} \, \mathbf{dA}$$

But,
$$\int y dA = A y_c$$

Therefore, $F = \rho g \sin \Theta \times A \times y_c$

$$\mathbf{F} = \rho \mathbf{g} \mathbf{A} \mathbf{h}_{\mathbf{c}} \tag{3.6}$$

Force on the strip , $dF=\rho\;g\;h\;dA$

$$\sin \Theta = \frac{h}{y}$$
 , $h = y \sin \Theta$

$$dF = \rho g y \sin \theta dA$$

Moment of force (dF) about axis O-O,

$$dF \times y = \rho g y \sin \Theta dA \times y = \rho g \sin \Theta y^2 dA$$

Sum of moments of all such forces about O - O,

$$M = \int \rho g \sin \theta y^2 dA = \rho g \sin \theta \int y^2 dA$$

But
$$\int y^2 dA = I_0$$

Therefore,
$$M = \rho g \sin \Theta I_o$$
 (3.7)

Moment of the total force F, about
$$O - O$$
 is given by : $F \times y_p$ (3.8)

Equating the two values given by equations (3.7) & (3.8)

$$F \times y_p = \rho g \sin \Theta I_o$$

$$y_p = \frac{\rho g \sin \theta I_o}{F}$$
(3.9)

But,
$$\sin\Theta = \frac{h_p}{y_p}$$
, $y_p = \frac{h_p}{\sin\theta}$, and $F = \rho g A h_c$

And $I_0 = I_G + A y_c^2$, Substituting these values in eq.(3.9), we get:

$$\frac{h_p}{\sin\theta} = \frac{\rho g \sin\theta}{\rho g Ah_c} (I_G + A y_c^2) \qquad (\times \sin \Theta)$$

But,
$$\sin\Theta = \frac{h_c}{y_c}$$
, $y_c = \frac{h_c}{\sin\theta}$

$$\mathbf{h}_{\mathrm{p}} = \frac{\sin^2\theta}{Ah_c} \left(I_G + A \frac{h_c^2}{\sin^2\theta} \right)$$

$$h_{p} = \frac{I_{G} \sin^{2}\theta}{A h_{c}} + h_{c}$$
 (3.10)

If the $\Theta=90^{0}$, equation (3.10) becomes same as equation (3.5) (vertical plane submerged) .

3.4 / Curved Surface Submerged in Liquid:

Consider a curved surface (AB), submerged in a static liquid as shown in Fig.(3.3). Let dA is the area of a small strip at a depth of (h) from water surface.

REA dA

(b)

Fig.(3.3)

(a)

Then pressure $(p) = \rho g h$

Force
$$(dF) = p \times area = \rho g h \times dA$$
 (3.11)

This force dF acts normal to the surface, hence, total force on the curved surface should be:

$$F = \int \rho g h dA \qquad (3.12)$$

By resolving the force dF in two components dF, and dF_x and dF_y in the x and y directions respectively. The total force in the x and y directions, i.e., F_x and F_y are obtained by integrating dF_x and dF_y, Then total force on the curved surface is:

$$\mathbf{F} = \sqrt{F_x^2 + F_y^2} \tag{3.13}$$

And inclination of resultant with horizontal is,

$$\tan\Theta = \frac{F_y}{F_x} \tag{3.14}$$

Resolving the force dF given by equation (3.11) in x and y directions:

$$dF_x = dF \sin\Theta = \rho g h dA \sin\Theta$$

$$dF_y = dF \cos\Theta = \rho g h dA \cos\Theta$$

Total forces in the x and y directions are:

$$F_x = \int dF_x = \rho g \int h dA \sin \theta \qquad (3.15)$$

$$F_y = \int dF_y = \rho g \int h dA \cos \Theta$$
 (3.16)

Fig.(3.3) b, shows the enlarged area dA, from this figure, i.e., Δ EFG:

 $\frac{1}{1.039}$ = 2.22 n