

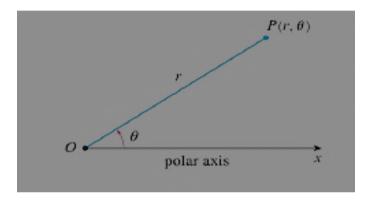
Dr.alaa mohammed Hussein wais) Lecturer (1st term – Lect. (Polar coordinate)

Polar Coordinates

In polar coordinates r is directed distance from origin (0) to point on to curve(p).

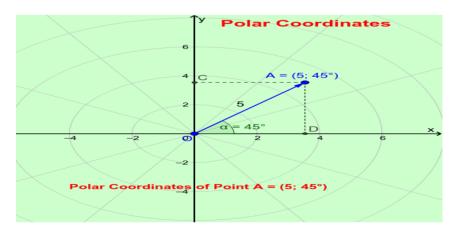
 $P(r,\theta)$ and θ is represented directed angle from

Initial $\theta = 0$) to line (0p)



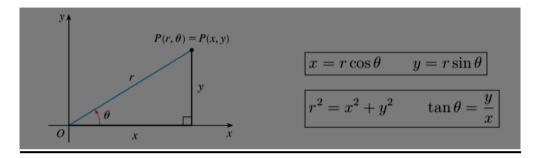
Example :Draw the following point(5,45°)

Solution//



Dr.alaa mohammed Hussein wais)|Lecturer (1st term – Lect. (Polar coordinate)

1. Connection between polar & cartesion coordinates



Example: give the equation xy=-5 in polar coordinates.

Solution //

$$x=r\cos\theta$$
 $y=r\sin\theta$ $r\cos\theta.r\sin\theta=-5 \rightarrow r^2\cos\theta\sin\theta=-5$ $r^2\frac{\sin2\theta}{2}=-5$ $[\sin2\theta=2\sin\theta\cos\theta]$

Example: Find Cartesian coordinates for the curve

$$r\left[\cos(\theta-\frac{\pi}{3}\right]=6$$

Solution//

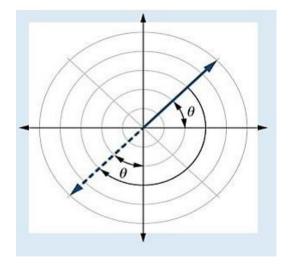
$$r(\cos \theta \cos \frac{\pi}{3} + \sin \theta \sin \frac{\pi}{3}) = 6$$
$$x \cos \frac{\pi}{3} + y \sin \frac{\pi}{3} = 6$$
$$\frac{1}{2}x + \frac{\sqrt{3}}{2}y = 6 \rightarrow x + \sqrt{3}y = 12$$

Dr.alaa mohammed Hussein wais)\(^1\)\(\text{Lecturer} \) (Polar coordinate)

2. Graphing in polar

The graph of equation $f(r,\theta)=0$ consist of all points whose polar coordinates satify the equation .we look for symmetry and max. values of radius angle .there are three types of . symmetry which are:

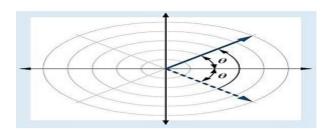
1. Symmetry about origin



a-
$$r \rightarrow -r$$

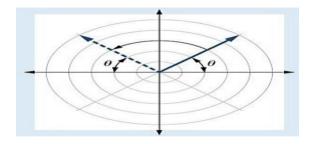
$$b - \theta \rightarrow \pi + \theta$$

Dr.alaa mohammed Hussein wais) Lecturer (1st term – Lect. (Polar coordinate)



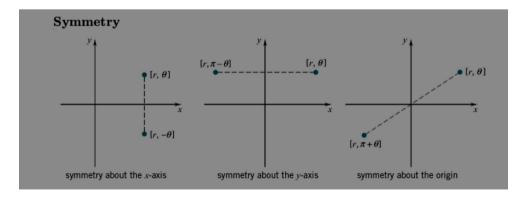
$$a-\theta \rightarrow -\theta$$

$$b - \begin{cases} r \to -r \\ \theta \to \pi - \theta \end{cases}$$



$$a-\theta \to \pi - \theta$$

$$b - \begin{cases} r \to -r \\ \theta \to -\theta \end{cases}$$



Dr.alaa mohammed Hussein wais)|Lecturer (1st term – Lect. (Polar coordinate)

Example: Graph the curve $r=a (1-\cos\theta)$

Solution //

1. Symmetry about origin

a-
$$r \rightarrow -r$$
. $-r = a(1 - \cos \theta)$ not symmetry

$$b-\theta \rightarrow \pi + \theta$$
. $r = a(1 - \cos(\pi + \theta))$

$$r = a(1 + \cos \theta)$$
 not symmetry

2. Symmetry about x-axis

$$a-\theta \rightarrow -\theta.r = a(1-cos(-\theta) \rightarrow r = a(1-cos\theta)$$
symmetry

$$a-\theta \rightarrow \pi - \theta \rightarrow r = a(1 - \cos(\pi - \theta))$$

θ	r
0	0
$rac{\pi}{4}$	0.3a
$\frac{\pi}{2}$	a
π	2a

Dr.alaa mohammed Hussein wais)\(^1\)\(\text{Lecturer} \) (Polar coordinate)

 $[r=a (1-\cos\theta)]$



Example: Graph the curve $r^2=4a^2\cos\theta$

Solution //

1. Symmetry about origin

a- r
$$\rightarrow$$
 -r. $r^2 = 4a^2 \cos \theta$ symmetry

2. Symmetry about x-axis

$$a-\theta \rightarrow -\theta . r^2 = 4a^2 \cos -\theta \rightarrow r^2 = 4a^2 \cos \theta$$
 symmetry

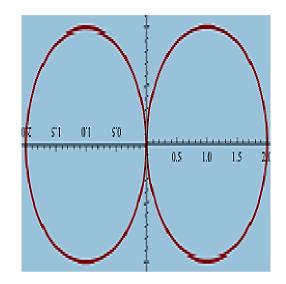
$$a-\theta \to \pi - \theta$$
. $\to r^2 = 4a^2 \cos(\pi - \theta)$

$$\rightarrow r^2 = 4a^2 \cos(\theta)$$
 symmetry

Dr.alaa mohammed Hussein wais) Lecturer (1st term – Lect. (Polar coordinate)

$$[r^2=4a^2\cos\theta]$$

θ	r
0	$\pm 2a$
$\frac{\pi}{4}$	±1.6a
$\frac{\pi}{3}$	$\pm\sqrt{2}a$
$\frac{\pi}{2}$	0



Example : Graph the curve r=5

Solution //

1. Symmetry about origin

a- r
$$\rightarrow$$
 -r. - r = 5 not symmetry

$$b-\theta \rightarrow \pi + \theta$$
. $r = 5$ symmetry

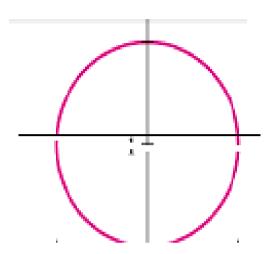
2. Symmetry about x-axis

$$a-\theta \rightarrow -\theta.r = 5$$
 symmetry

$$a-\theta \rightarrow \pi - \theta . \rightarrow r = 5$$
 symmetry

Dr.alaa mohammed Hussein wais)\(^1\)Lecturer (
\(^1\)St term - Lect. (Polar coordinate)

θ	r
0	5
$\frac{\pi}{4}$	5
$\frac{\pi}{2}$	5
π	5



Example : Graph the curve $r=2(1+\sin \theta)$

Solution //

1. Symmetry about origin

a-
$$r \rightarrow -r$$
. $-r = 2(1 + \sin \theta)$ not symmetry

$$b-\theta \to \pi + \theta$$
. $r = 2(1 + \sin(\pi + \theta))$

$$r = 2(1 - \sin \theta)$$
 not symmetry

$$a_{\theta} \rightarrow -\theta . r = 2(1 + \sin(-\theta))$$

$$\rightarrow r = 2(1 - \sin \theta)$$
 not symmetry

$$b-\begin{cases} r \to -r \\ \theta \to \pi - \theta \end{cases}$$

$$-r = 2(1 + \sin(\pi - \theta)) \rightarrow -r = 2(1 + \sin\theta)$$
 not symmetry

Dr.alaa mohammed Hussein wais) Lecturer (1st term – Lect. (Polar coordinate)

3. Symmetry about y-axis

$$a-\theta \to \pi - \theta . \to r = 2(1 + \sin(\pi - \theta))$$

 $\to r = 2(1 + \sin \theta)$ symmetry

$$[r = 2(1 + \sin \theta)]$$

0	<i>r</i> 2	
$\frac{\pi}{4}$	3.4	
$\frac{\pi}{2}$	4	
$\frac{-\pi}{4}$ $\frac{-\pi}{2}$	0.6 0	0

Exercise: Example: Graph the curve $r=2(1+\cos\theta)$