Intelligent Medical Systems Department Lecturer Name

Data Structures — Lecture (3) Asst.Prof. Mehdi Ebady Manna
Second Stage

L’IEOIIII all e ala

AL MUSTAQBAL UNIVERSIT?

solell iyle

 SAPAY | § ¥ N | § N Y | PR

Intelligent Medical Systems Department

Lecture: (3)

Queues

Subject: Data structure
Class: second

Lecturer: Prof.Dr. Mehdi Ebady Manaa

Programmer:- Fatima Hussein Jawad

“3 ! Intelligent Medical Systems Department Lecturer Name

Data Structures — Lecture (3) Asst.Prof. Mehdi Ebady Manna
Second Stage

A queue : is a linear data structure that follows the First In, First Out
(FIFO) principle, meaning that the first item that comes in is the first
item that comes out. A queue can be thought of as a waiting line
(queue) where people join at the end and leave at the beginning.

» Basic operations in Queue:

1. Enqueue: Add an item to the end of the Queue.

2. Dequeue: Remove the first item from the Queue.

3. Peek/Front: See the item at the front of the Queue without removing it.
4. isEmpty: Checks if the Queue is empty.

5. isFull: Checks if the Queue is full (if it has a specified capacity).

> Types of Queue:

1. Simple Queue: Allows items to be inserted from the end and
removed from the beginning.

2. Circular Queue: Circular queue where the last location is linked
to the first location, allowing space to be reused.

3. Priority Queue: Priority queue, where items are processed based
on priority rather than chronological order.

Intelligent Medical Systems Department Lecturer Name

Data Structures — Lecture (3) Asst.Prof. Mehdi Ebady Manna
Second Stage

4. Deque (Double-Ended Queue): Items can be inserted and
removed from both ends.

» Here are the basic operations of a Queue in Python, demonstrated
with simple examples:

1. Enqueue (Adding an item to the queue) This operation adds
an item to the end of the queue.

queue = []

queue.append(1) # Enqueue operation
queue.append(2)

queue.append(3)

print("Queue after enqueue operations:", queue)

Output: Queue after enqueue operations: [1, 2, 3]

2.Dequeue (Removing an item from the queue)

This operation removes the item from the front of the queue (the
first item that was added).

queue = []
queue.append(1) # Enqueue operation
queue.append(2)

queue.append(3)

Page |3

Intelligent Medical Systems Department Lecturer Name

Data Structures — Lecture (3) Asst.Prof. Mehdi Ebady Manna
Second Stage

first_item = queue.pop(0)

print("Dequeued item:", first_item) # Dequeue operation

print("Queue after dequeue:", queue)

Output: Dequeued item: 1

Output: Queue after dequeue: [2, 3]

3. Peek (Looking at the front item)

This operation lets you view the front item of the queue without removing it.
queue = [1,2,3]

front_item = queue[0] if queue else None # Peek operation

print("Front item:", front_item)

Output: Front item: 1

4. isEmpty (Check if the queue is empty)

This operation checks whether the queue is empty or not.

queue = [1,2,3]

is_empty = len(queue) == # isEmpty operation

print("Is the queue empty?", is_empty)

Output: Is the queue empty? False

Intelligent Medical Systems Department Lecturer Name

Data Structures — Lecture (3) Asst.Prof. Mehdi Ebady Manna
Second Stage

5. Queue Size (Get the current size of the queue)

This operation returns the number of items in the queue.
queue = [1,2,3]

queue_size = len(queue) # Size of the queue
print("Queue size:", queue_size)

Output: Queue size: 3

» Summary of operations:
Enqueue: Add to the end of the queue (append).

Dequeue: Remove from the front of the queue (pop(0)).
Peek: View the front item without removing it (queue[0]).
isEmpty: Check if the queue is empty (len(queue) == 0).

Size: Get the current size of the queue (len(queue)).

> The difference between array, stack and queue:

Array : provides random access to elements and allows data to be

stored in sequential form.

Stack: Commonly used for backtracking algorithms, parsing
expressions, and managing function calls.

Queue: Often used in scheduling tasks, managing processes, and
handling requests in order.

Page |5

Intelligent Medical Systems Department Lecturer Name

Data Structures — Lecture (3) Asst.Prof. Mehdi Ebady Manna
Second Stage

In summary, a Stack allows for reverse order processing (LIFO),
while a Queue processes elements in the order they were added
(FIFO).

» Arithmetic operations on the Queue :

1. Code for Addition Between Two Arrays .

queuel =[10, 20, 30] # Two arrays representing queues

queue? = [5, 15, 25]

result =[] # List to store the result of the addition

foriin range(len(queuel)): # Add elements from both arrays
result.append(queuel[i] + queue2[i])

print("Sum result:", result)

2. Code for Subtraction Between Two Arrays

queuel =[50, 40, 30] # Two arrays representing queues

queue2 =[10, 20, 5]

result =[] # List to store the result of the subtraction

foriin range(len(queuel)): # Subtract elements from both arrays
result.append(queuell[i] - queue2][i])

print("Subtraction result:", result)

Intelligent Medical Systems Department Lecturer Name

Data Structures — Lecture (3) Asst.Prof. Mehdi Ebady Manna
Second Stage

3. Code for Division Between Two Arrays
queuel =[100, 50, 40] # Two arrays representing queues
queue2 =[2, 5, 8]
result =[] # List to store the result of the division
foriin range(len(queuel)): # Divide elements from both arrays
if queue2[i] !=0: # Ensure not dividing by zero
result.append(queuel][i] / queue2[i])
else:
result.append(None) # Handle division by zero case

print("Division result:", result)

4. Code for Checking Odd and Even Numbers in an Array
queue = [15, 22, 35, 44] # An array representing a queue
for num in queue: # Check for odd and even numbers
if num % 2 == 0:
print(num, "is even")
else:

print(num, "is odd")

Here are the previous operations on a queue implemented in Python without using
any external libraries ..

Intelligent Medical Systems Department

Data Structures — Lecture (3)
Second Stage

Lecturer Name

Asst.Prof. Mehdi Ebady Manna

1. Calculate Size:

queue =[1, 2, 3,4, 5]

def size(queue):
return len(queue)

print(size(queue)) # Output: 5

2. Search for an Element in the Queue:
queue =[1, 2, 3,4, 5]
def search(queue, element):
return element in queue

print(search(queue, 3)) # Output: True

print(search(queue, 6)) # Output: False

3. Find Maximum or Minimum:
queue =[1, 2, 3,4, 5]
def find_max(queue):
return max(queue)
def find_min(queue):
return min(queue)
print(find_max(queue)) # Output: 5

print(find_min(queue)) # Output: 1

Intelligent Medical Systems Department

Data Structures — Lecture (3)
Second Stage

Lecturer Name

Asst.Prof. Mehdi Ebady Manna

4. Reverse the Queue:
queue =[1, 2, 3,4, 5]
def reverse_queue(queue):
return queue[::-1]
reversed_queue = reverse_queue(queue)
print(reversed_queue) # Output: [5, 4, 3, 2, 1]
5. Merge Two Queues:
queue =[1, 2, 3,4, 5]
queue2 = [6, 7, 8]
def merge_queues(queuel, queue?2):

return queuel + queue2

merged_queue = merge_queues(queue, queue2)

print(merged_queue) # Output: [1, 2, 3,4,5,6, 7, 8]

6. Rotate the Queue:
queue =[1, 2, 3,4, 5]
def rotate_queue(queue):
first_element = queue.pop(0) # Remove the first element
queue.append(first_element) # Add it to the end of the list
return queue
rotated_queue = rotate_queue(queue)

print(rotated_queue) # Output: [2, 3, 4, 5, 1]

