

P a g e | 1

Intelligent Medical Systems Department

Data Structures – Lecture (3)
Second Stage

Lecturer Name

Asst.Prof. Mehdi Ebady Manna

 كلية العلوم

 قــســــــــــم الانـــظــــمــــة الــــطـبـيـة الـــذكــــــيـــة
Intelligent Medical Systems Department

Lecture: (3)

Queues

Subject: Data structure

Class: second

Lecturer: Prof.Dr. Mehdi Ebady Manaa

 Programmer:- Fatima Hussein Jawad

P a g e | 2

Intelligent Medical Systems Department

Data Structures – Lecture (3)
Second Stage

Lecturer Name

Asst.Prof. Mehdi Ebady Manna

A queue : is a linear data structure that follows the First In, First Out

(FIFO) principle, meaning that the first item that comes in is the first

item that comes out. A queue can be thought of as a waiting line

(queue) where people join at the end and leave at the beginning.

 Basic operations in Queue:

1. Enqueue: Add an item to the end of the Queue.

2. Dequeue: Remove the first item from the Queue.

3. Peek/Front: See the item at the front of the Queue without removing it.

4. isEmpty: Checks if the Queue is empty.

5. isFull: Checks if the Queue is full (if it has a specified capacity).

 Types of Queue:

1. Simple Queue: Allows items to be inserted from the end and

removed from the beginning.

2. Circular Queue: Circular queue where the last location is linked

to the first location, allowing space to be reused.

3. Priority Queue: Priority queue, where items are processed based

on priority rather than chronological order.

P a g e | 3

Intelligent Medical Systems Department

Data Structures – Lecture (3)
Second Stage

Lecturer Name

Asst.Prof. Mehdi Ebady Manna

4. Deque (Double-Ended Queue): Items can be inserted and

removed from both ends.

 Here are the basic operations of a Queue in Python, demonstrated

with simple examples:

1. Enqueue (Adding an item to the queue) This operation adds

an item to the end of the queue.

queue = []

queue.append(1) # Enqueue operation

queue.append(2)

queue.append(3)

print("Queue after enqueue operations:", queue)

Output: Queue after enqueue operations: [1, 2, 3]

2. Dequeue (Removing an item from the queue)

This operation removes the item from the front of the queue (the

first item that was added).

queue = []

queue.append(1) # Enqueue operation

queue.append(2)

queue.append(3)

P a g e | 4

Intelligent Medical Systems Department

Data Structures – Lecture (3)
Second Stage

Lecturer Name

Asst.Prof. Mehdi Ebady Manna

first_item = queue.pop(0)

print("Dequeued item:", first_item) # Dequeue operation

print("Queue after dequeue:", queue)

Output: Dequeued item: 1

Output: Queue after dequeue: [2, 3]

3. Peek (Looking at the front item)

This operation lets you view the front item of the queue without removing it.

queue = [1,2,3]

front_item = queue[0] if queue else None # Peek operation

print("Front item:", front_item)

Output: Front item: 1

4. isEmpty (Check if the queue is empty)

This operation checks whether the queue is empty or not.

queue = [1,2,3]

is_empty = len(queue) == 0 # isEmpty operation

print("Is the queue empty?", is_empty)

Output: Is the queue empty? False

P a g e | 5

Intelligent Medical Systems Department

Data Structures – Lecture (3)
Second Stage

Lecturer Name

Asst.Prof. Mehdi Ebady Manna

5. Queue Size (Get the current size of the queue)

This operation returns the number of items in the queue.

queue = [1,2,3]

queue_size = len(queue) # Size of the queue

print("Queue size:", queue_size)

Output: Queue size: 3

 Summary of operations:

Enqueue: Add to the end of the queue (append).

Dequeue: Remove from the front of the queue (pop(0)).

Peek: View the front item without removing it (queue[0]).

isEmpty: Check if the queue is empty (len(queue) == 0) .

Size: Get the current size of the queue (len(queue)).

 The difference between array , stack and queue:

Array : provides random access to elements and allows data to be

stored in sequential form.

Stack: Commonly used for backtracking algorithms, parsing

expressions, and managing function calls.

Queue: Often used in scheduling tasks, managing processes, and

handling requests in order.

P a g e | 6

Intelligent Medical Systems Department

Data Structures – Lecture (3)
Second Stage

Lecturer Name

Asst.Prof. Mehdi Ebady Manna

In summary, a Stack allows for reverse order processing (LIFO),

while a Queue processes elements in the order they were added

(FIFO).

 Arithmetic operations on the Queue :

1. Code for Addition Between Two Arrays .

queue1 = [10, 20, 30] # Two arrays representing queues

queue2 = [5, 15, 25]

result = [] # List to store the result of the addition

for i in range(len(queue1)): # Add elements from both arrays

 result.append(queue1[i] + queue2[i])

print("Sum result:", result)

2. Code for Subtraction Between Two Arrays

queue1 = [50, 40, 30] # Two arrays representing queues

queue2 = [10, 20, 5]

result = [] # List to store the result of the subtraction

for i in range(len(queue1)): # Subtract elements from both arrays

 result.append(queue1[i] - queue2[i])

print("Subtraction result:", result)

P a g e | 7

Intelligent Medical Systems Department

Data Structures – Lecture (3)
Second Stage

Lecturer Name

Asst.Prof. Mehdi Ebady Manna

3. Code for Division Between Two Arrays

queue1 = [100, 50, 40] # Two arrays representing queues

queue2 = [2, 5, 8]

result = [] # List to store the result of the division

for i in range(len(queue1)): # Divide elements from both arrays

 if queue2[i] != 0: # Ensure not dividing by zero

 result.append(queue1[i] / queue2[i])

 else:

 result.append(None) # Handle division by zero case

print("Division result:", result)

4. Code for Checking Odd and Even Numbers in an Array

queue = [15, 22, 35, 44] # An array representing a queue

for num in queue: # Check for odd and even numbers

 if num % 2 == 0:

 print(num, "is even")

 else:

 print(num, "is odd")

Here are the previous operations on a queue implemented in Python without using

any external libraries ..

P a g e | 8

Intelligent Medical Systems Department

Data Structures – Lecture (3)
Second Stage

Lecturer Name

Asst.Prof. Mehdi Ebady Manna

1. Calculate Size:

queue = [1, 2, 3, 4, 5]

def size(queue):

 return len(queue)

print(size(queue)) # Output: 5

2. Search for an Element in the Queue:

queue = [1, 2, 3, 4, 5]

def search(queue, element):

 return element in queue

print(search(queue, 3)) # Output: True

print(search(queue, 6)) # Output: False

3. Find Maximum or Minimum:

queue = [1, 2, 3, 4, 5]

def find_max(queue):

 return max(queue)

def find_min(queue):

 return min(queue)

print(find_max(queue)) # Output: 5

print(find_min(queue)) # Output: 1

P a g e | 9

Intelligent Medical Systems Department

Data Structures – Lecture (3)
Second Stage

Lecturer Name

Asst.Prof. Mehdi Ebady Manna

4. Reverse the Queue:

queue = [1, 2, 3, 4, 5]

def reverse_queue(queue):

 return queue[::-1]

reversed_queue = reverse_queue(queue)

print(reversed_queue) # Output: [5, 4, 3, 2, 1]

5. Merge Two Queues:

queue = [1, 2, 3, 4, 5]

queue2 = [6, 7, 8]

def merge_queues(queue1, queue2):

 return queue1 + queue2

merged_queue = merge_queues(queue, queue2)

print(merged_queue) # Output: [1, 2, 3, 4, 5, 6, 7, 8]

6. Rotate the Queue:

queue = [1, 2, 3, 4, 5]

def rotate_queue(queue):

 first_element = queue.pop(0) # Remove the first element

 queue.append(first_element) # Add it to the end of the list

 return queue

rotated_queue = rotate_queue(queue)

print(rotated_queue) # Output: [2, 3, 4, 5, 1]

