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A queue : is a linear data structure that follows the First In, First Out 

(FIFO) principle, meaning that the first item that comes in is the first 

item that comes out. A queue can be thought of as a waiting line 

(queue) where people join at the end and leave at the beginning. 

 

 Basic operations in Queue: 

1. Enqueue: Add an item to the end of the Queue. 

2. Dequeue: Remove the first item from the Queue. 

3. Peek/Front: See the item at the front of the Queue without removing it. 

4. isEmpty: Checks if the Queue is empty. 

5. isFull: Checks if the Queue is full (if it has a specified capacity). 

 

 Types of Queue: 

1. Simple Queue: Allows items to be inserted from the end and 

removed from the beginning. 

2. Circular Queue: Circular queue where the last location is linked 

to the first location, allowing space to be reused. 

3. Priority Queue: Priority queue, where items are processed based 

on priority rather than chronological order. 
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4. Deque (Double-Ended Queue): Items can be inserted and 

removed from both ends. 

 

 Here are the basic operations of a Queue in Python, demonstrated 

with simple examples: 

1. Enqueue (Adding an item to the queue) This operation adds 

an item to the end of the queue. 

queue = [] 

queue.append(1) # Enqueue operation 

queue.append(2) 

queue.append(3) 

print("Queue after enqueue operations:", queue) 

# Output: Queue after enqueue operations: [1, 2, 3] 

 

2. Dequeue (Removing an item from the queue) 

This operation removes the item from the front of the queue (the 

first item that was added). 

queue = [] 

queue.append(1) # Enqueue operation 

queue.append(2) 

queue.append(3) 
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first_item = queue.pop(0) 

print("Dequeued item:", first_item) # Dequeue operation 

print("Queue after dequeue:", queue) 

# Output: Dequeued item: 1  

# Output: Queue after dequeue: [2, 3] 

 

3. Peek (Looking at the front item) 

This operation lets you view the front item of the queue without removing it. 

queue = [1,2,3] 

front_item = queue[0] if queue else None # Peek operation 

print("Front item:", front_item) 

# Output: Front item: 1 

4. isEmpty (Check if the queue is empty) 

This operation checks whether the queue is empty or not. 

queue = [1,2,3] 

is_empty = len(queue) == 0 # isEmpty operation 

print("Is the queue empty?", is_empty) 

 

# Output: Is the queue empty? False 
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5. Queue Size (Get the current size of the queue) 

This operation returns the number of items in the queue. 

queue = [1,2,3] 

queue_size = len(queue)  # Size of the queue 

print("Queue size:", queue_size) 

# Output: Queue size: 3 

 

 Summary of operations: 

Enqueue: Add to the end of the queue (append). 

Dequeue: Remove from the front of the queue (pop(0)). 

Peek: View the front item without removing it (queue[0]). 

isEmpty: Check if the queue is empty (len(queue) == 0) . 

Size: Get the current size of the queue (len(queue)). 

 

 The difference between array , stack and queue: 

Array : provides random access to elements and allows data to be 

stored in sequential form. 

Stack: Commonly used for backtracking algorithms, parsing 

expressions, and managing function calls. 

Queue: Often used in scheduling tasks, managing processes, and 

handling requests in order. 
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In summary, a Stack allows for reverse order processing (LIFO), 

while a Queue processes elements in the order they were added 

(FIFO). 

 Arithmetic operations on the Queue : 

1. Code for Addition Between Two Arrays . 

 

queue1 = [10, 20, 30]  # Two arrays representing queues 

queue2 = [5, 15, 25]  

result = []  # List to store the result of the addition 

for i in range(len(queue1)):  # Add elements from both arrays 

    result.append(queue1[i] + queue2[i]) 

print("Sum result:", result) 

 

2. Code for Subtraction Between Two Arrays 

 

queue1 = [50, 40, 30]  # Two arrays representing queues 

queue2 = [10, 20, 5]  

result = []  # List to store the result of the subtraction 

for i in range(len(queue1)):  # Subtract elements from both arrays 

    result.append(queue1[i] - queue2[i]) 

print("Subtraction result:", result) 
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3. Code for Division Between Two Arrays 

queue1 = [100, 50, 40]  # Two arrays representing queues 

queue2 = [2, 5, 8] 

result = []  # List to store the result of the division 

for i in range(len(queue1)):   # Divide elements from both arrays 

    if queue2[i] != 0:    # Ensure not dividing by zero 

        result.append(queue1[i] / queue2[i]) 

    else: 

        result.append(None)  # Handle division by zero case 

print("Division result:", result)    

 

4. Code for Checking Odd and Even Numbers in an Array 

queue = [15, 22, 35, 44]   # An array representing a queue 

for num in queue:  # Check for odd and even numbers 

    if num % 2 == 0: 

        print(num, "is even") 

    else: 

        print(num, "is odd") 

 

Here are the previous operations on a queue implemented in Python without using 

any external libraries .. 
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1. Calculate Size: 

queue = [1, 2, 3, 4, 5] 

def size(queue): 

    return len(queue) 

print(size(queue))   # Output: 5 

  

2. Search for an Element in the Queue: 

queue = [1, 2, 3, 4, 5] 

def search(queue, element): 

    return element in queue 

print(search(queue, 3))   # Output: True 

print(search(queue, 6))   # Output: False 

 

3. Find Maximum or Minimum: 

queue = [1, 2, 3, 4, 5] 

def find_max(queue): 

    return max(queue) 

def find_min(queue): 

    return min(queue) 

print(find_max(queue))  # Output: 5 

print(find_min(queue))  # Output: 1 
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4.  Reverse the Queue: 

queue = [1, 2, 3, 4, 5] 

def reverse_queue(queue): 

    return queue[::-1] 

reversed_queue = reverse_queue(queue) 

print(reversed_queue)  # Output: [5, 4, 3, 2, 1] 

5. Merge Two Queues: 

queue = [1, 2, 3, 4, 5] 

queue2 = [6, 7, 8] 

def merge_queues(queue1, queue2): 

    return queue1 + queue2 

merged_queue = merge_queues(queue, queue2) 

print(merged_queue)  # Output: [1, 2, 3, 4, 5, 6, 7, 8] 

 

6.  Rotate the Queue: 

queue = [1, 2, 3, 4, 5] 

def rotate_queue(queue): 

    first_element = queue.pop(0)  # Remove the first element 

    queue.append(first_element)     # Add it to the end of the list 

    return queue 

rotated_queue = rotate_queue(queue) 

print(rotated_queue)  # Output: [2, 3, 4, 5, 1] 


