

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

Introduction To AI

Problem Solving Agent (goal-based)

This chapter describes one kind of goal-based agent called a problem-solving agent. Our

discussion of problem solving begins with precise definition of problems and their

solutions and give several examples to illustrate these definitions. We then describe

several general-purpose search algorithms that can be used to solve these problems.

We will see several uninformed search algorithms, algorithms that are given no

information about the problem other than its definition. Although some of these algorithms

can solve any solvable problem, none of them can do so efficiently. Informed search

algorithms, on the other hand, can quite will given some guidance on where to look for

solutions.

1. Formulating problems: a problem can be defined formally by five components:

a. The initial state that agent starts in. For example, the initial state for our

agent in Romania might be describe as In (Arad).

b. A description of the possible actions available to the agent. Given a

particular state (s), Actions(s) returns the set of actions that can be executed

in s. we say that each of these actions is applicable in s. for example, from

the state In (Arad), the applicable actions are { Go(Sibiu), Go(Timisoara),

Go (Zerind)}.

c. A description of what each action does; the formal name for this is the

transition model. Specified by function Result (s,a) that returns the state

results from doing action a in state s.

Result(in(Arad),Go(Zerind)) = In(Zerind)

d. The goal test, which determines whether a given state is a goal state.

Sometimes there is an explicit set of possible goal states, and the test

simply checks whether the given state is one of them.

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

Introduction To AI

e. A path cost function that assigns a numeric cost to each path. The

problem-solving agent chooses a const function that reflects its own

performance measures.

2. Searching for Solutions: having formulated some problems, we now need to

solve them. A solution is an action sequence, so search algorithms work by

considering various possible actions sequences. the possible action

sequences starting at the initial state for a search tree with the initial state at the

root, the branches are actions and the nodes correspond to states in the state

space of the problem.

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

Introduction To AI

Measuring problem-solving performance: before we get into the design of specific

search algorithms, we need to consider the criteria that might be to choose among them.

We can evaluate an algorithm’s performance in four ways:

1. Completeness: it the algorithm guaranteed to find a solution when there is one.

2. Optimality: does the strategy find the optimal solution. Solution quality is measured

by the path cost function, and an optimal solution has the lowest path cost among

all solutions.

3. Time complexity: how long does it take to find a solution.

4. Space complexity: how much memory is needed to perform the search.

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

Introduction To AI

Search Strategies

This section covers several search strategies that come under the heading of :

1. Uninformed search (blind search): the term means the strategies have no

additional information about the states beyond that provided in the problem

definition. All they can do is generate successors and distinguish a goal state from

non-goal state.

2. Informed search (heuristic) : one that uses problem-specific knowledge beyond the

definition of the problem itself, can find solutions more efficiently than can an

uninformed strategy.

Uninformed Search Strategies

1. Breadth-first search: it is a simple strategy in which the root node is expanded

first, then all the successors of the root node are expanded next, then their

successors, and so on. In general, all the nodes are expanded at a given depth in

the search tree before any nodes at the next level are expanded. In Breadth-first

search the shallowest unexpanded node is chosen for expansion. This is achieved

very simply by using FIFO queue for the frontier. Thus, new nodes go to the back

of the queue, and old nodes, which are shallower than the new nodes, get

expanded first. The goal test is applied to each node when its generated rather

than when it is selected for expansion.

Example: in the following example we show the traversing of the tree using BFS

algorithm form the root node S to goal node K.

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

Introduction To AI

The breadth-first search according to the four performance criteria, we can easily

see that:

• It is complete

• Optimal if all paths have the same cost.

• Time and space complexity is not so good.

2. Depth-first search: it always expands the deepest node in the current frontier of

the search tree. The search proceeds immediately to the deepest level of the

search tree, where the nodes have no successors. As those nodes are expanded,

they are dropped for the frontier, so then the search backs up to the next deepest

node that still has unexplored successors. Depth-first search uses a LIFO queue,

A LIFO queue means that the most recently generated node is chosen for

expansion. This must be the deepest unexpanded node because it is one deeper

than its parent, which in turn was the deepest unexpanded node when it was

selected. The goal test is applied when the node is selected for expansion.

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

Introduction To AI

Example: in the below search tree, we have shown the flow of depth-first search,

and it will follow the order as

Root node ----------- > Left node ------------- > Right Node

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

Introduction To AI

3. Uniform-cost search: when all steps cost are equal, breadth-first search is

optimal because it always expands the shallowest unexpanded node. By a simple

extension, we can find an algorithm that is optimal with any step-cost function.

Instead of expanding the shallowest node, uniform-cost search expands the node

n with the lowest path cost g(n). This is done by storing the frontier as a priority

queue ordered by g.

In addition to the ordering of the queue by path cost, there are two other significant

differences from breadth-first search.

First: the goal test is applied to a node when it is selected for expansion rather than

when it is first generated.

Second: the second difference is that a test is added in case a better path is found

to a node currently on the frontier.

 Both of these modifications come into play in the following example:

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

Introduction To AI

where the problem is to get is to get from Sibiu to Bucharest. The successors of

Sibiu are Rimnicu Vilcea and Fagaras, with cost 80 and 99, respectively. The least-

cost node, Rimnicu Vilcea, is expanded next, adding Pitesti with cost 80 + 97 =

177. The least-cost node is now Fagaras, so it is expanded, adding Bucharest with

cost 99+211 = 310. Now a goal node has been generated, but uniform-cost search

keeps going, choosing Pitesti for expansion and adding a second path to

Bucharest with cost 80 + 97 + 101 = 278. Now the algorithm checks to see if this

new path is better than the old one, it is, so the old one is discarded. Bucharest,

now with g-cost 278, is selected for expansions and the solution is returned.

Example: the following example shows how to traverse a tree using uniform cost

search.

4. Depth-limited search: the embarrassing failure of depth-first search in infinite

state spaces can be alleviated by supplying depth-first search with a

predetermined depth limit L . that is, nodes at depth L are treated as if the have no

successors. The following examples explain the implementation of depth-limited

search algorithm.

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

Introduction To AI

5. Iterative deepening depth-first search: the iterative deepening search is a

general strategy, often used in combination with depth-first tree search, that finds

the best depth limit. It does this by gradually increasing the limit, first 0, then 1,

then 2 and so on, until a goal is found. The following example showing the iterative

deepening depth-first search.

1st Iteration ----------- A

2nd iteration ----------- A, B,C

3rd iteration ----------- A,B,D,E,C,F,G

4th iteration ------------ A, B, D, H, I, E, F, K, G.

A more detailed example can be explained in the following figure.

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

Introduction To AI

6. Bidirectional search: the idea behind bidirectional search is to run two

simultaneous searches, one forward from the initial state and the other backward

from the goal, hoping that the two searches meet in the middle. Bidirectional

search is implemented by replacing the goal test with a check to see whether the

frontiers of the two searches intersect, if they do, a solution has been found. The

check can be done when each node is generated or selected for expansion.

