

P a g e | 1 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

العلومكلية
ة ـيـبـطــــة الــــمــــظـــن الانــــــــــســق

ةـــيــــــذكـــال

Depth First Search

Lab: (3)

Subject: Artificial Intelligence

Class: Third

Lecturer: Dr. Maytham N. Meqdad

P a g e | 2 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

Python Program for DFS

https://www.programiz.com/online-compiler/8Q1CTL1bKjHQ8

Graph represented as an adjacency list

graph = {

 'A': ['B', 'C'],

 'B': ['D', 'E'],

 'C': ['F'],

 'D': [],

 'E': ['F'],

 'F': []

}

Iterative DFS using a stack

def dfs_iterative(graph, start):

 visited = set() # Track visited nodes to avoid cycles

 stack = [start] # Initialize stack with the starting node

 print("Iterative DFS:")

 while stack:

 node = stack.pop() # Pop a node from the stack

 if node not in visited:

 print(node, end=" ") # Process the node (e.g., print it)

 visited.add(node) # Mark it as visited

 # Add all unvisited neighbors to the stack

 for neighbor in reversed(graph[node]): # Reverse to maintain DFS order

 if neighbor not in visited:

 stack.append(neighbor)

 print() # Newline for better readability

Recursive DFS

def dfs_recursive(graph, node, visited=None):

 if visited is None:

 visited = set() # Initialize the set on the first call

 print("Recursive DFS:")

 visited.add(node)

 print(node, end=" ") # Process the node

 # Recursively visit all unvisited neighbors

 for neighbor in graph[node]:

 if neighbor not in visited:

 dfs_recursive(graph, neighbor, visited)

 if node == list(graph.keys())[0]: # Newline for better readability

 print()

Running both DFS methods

dfs_iterative(graph, 'A')

dfs_recursive(graph, 'A')

https://www.programiz.com/online-compiler/8Q1CTL1bKjHQ8

