

Physical Pharmacy

(LC-phase)or Mesophase

Contents

In this lecture you will learn:

- Definition and introduction to liquid crystals
- Structure of liquid crystals
- Classification of liquid crystals
- Applications of liquid crystals

Discovery of LC

While studying the function of cholesterol in plants, **Friedrich Reinitzer**, an Austrian botanist, found an unusual melting that was always accompanied by the presence of cloudy liquid state before the clear liquid appears.

Discovery of LC

Note:

- a. Liquid crystal state is seen in some but not all molecules
- b. Water molecules, for example, melt directly from solid crystalline ice into liquid water (don't show LC phase)
- c. p-azoxyanisole (PAA) shows LC phase.

- Liquid crystal (LC) state is a state of matter whose properties are intermediate between those of conventional liquids and those of solid crystals.
- A more proper name is 'mesomorphic phases' or 'mesophase' (mesomorphic: intermediate form).
- It is also known as the "fourth state of matter",

Properties of Liquid Crystals

Because of their intermediate nature, liquid crystals have some of the properties of liquids and some of the properties of solids, as follows:

Properties of Liquid Crystals

Note: LC has also properties not found in liquids or solids

Structure of Liquid Crystals

- The liquid crystal building blocks (molecules that demonstrate mesophases) are called mesogens
- These are organic molecules which have an anisometric shape and combine flexible and rigid fragments
- Liquid crystal molecules (mesogens) generally have several common characteristics.
 Among these are:
- a. Long, narrow, rod-like organic molecules (Length > width) with rigid central region and somewhat flexible ends of the molecules.

Structure of Liquid Crystals

- b. Sufficient molecular interactions
- c. Presence of unsaturation and bulky functional group
- d. Presence of carboxylic acid group at the end of the side chain.
- e. Uneven distribution of electrical charges along their axes (i.e, are strong dipoles and/or easily polarizable substituents).

Classification of Liquid Crystals

- According to the formation conditions, liquid crystals are categorized into two generic classes, these are:
- a. Lytoropic liquid crystalline phases
- **b.** Thermotropic liquid crystalline phases

Classification of Liquid Crystals

- Lyotropic phases are formed when mixed with aqueous phase (they are mixtures of amphiphilic molecules in a solvent at a given temperatures and relative concentration)
- Phase transitions are temperature and concentration dependent

Thermotropic phases

- Thermotropic liquid crystalline phases are formed by a change of temperature (they are formed on heating the crystalline solid or cooling the isotropic liquid)
- Phase transitions are temperaturedependent

Classification of Liquid Crystals

Lyotropic phases (lyotropics or lyomesophases)

- They are important in solubilization and drug delivery systems, and are of importance in colloids, gels, biology and soaps.
- Lyotropic liquid crystals are subcategorized as lamellar, cubic and hexagonal.

Thermotropic phases

They are used in various applications

Thermotropic liquid crystals are subcategorized into discotic, calamitic and banana and bowel-shaped LCs

Calamitic LCs can be further subdivided into

The liquid crystal phase changes

Liquid crystals retain their dual liquid and solid nature only over a certain range of temperature and pressures.

Significance and Applications of Liquid Crystals

- Many biological materials form liquid crystals:
- a. Myelin, a fatty material extracted from nerve cells, was the first intensively studied liquid crystal.
- b. Blood is an ordinary disordered isotropic fluid.
- The disklike shape of red blood cells, however, favours liquid crystallinity at certain concentrations and temperatures
- d. In atherosclerosis, it is the incorporation of cholesterol and lipids in human subendothelialmacrophages that leads to an insoluble liquid crystalline biologic membrane that ultimately results in plaque formation.

- Some liquid crystals show consistent color changes with temperature, and this characteristic has resulted in their being used to:
- a. Detect areas of elevated temperature under the skin that may be due to a disease process (study of malignant and non-malignant tissues in human beings for the treatment of cancer as well)
- b. Build a liquid crystal thermometer: just by looking at the color or thermometer, we can know the temperature.

- Hexagonal and cubic mesophases are particularly of high interest in the drug delivery field due to their exceptional potential as drug vehicles.
- Nematic liquid crystals are used in the displays of devices as wristwatches, calculators, portable computers, and flat-screen devices (LCD) and televisions because they are sensitive to changes in temperature and electric field.

