

Engineering and Numerical Analysis Al-Mustagbal University College

2.2 Homogeneous First Order Differential Equation

تكون المعادلة التفاضلية متجانسة إذا كانت الدالة M(x,y) متجانسة والدالة N(x,y) متجانسة أيضا وبنفس الدرجة. ويتم التحقق من ذلك من خلال تعويض عن كل x ب (λx) وعن كل y ب أفتحقق ما يلي:

M(x,y)dx = N(x,y)dy is homogenous equation if:

 $M(\lambda x, \lambda y) = \lambda^n \cdot M(x, y)$: This part is homogenous

 $N(\lambda x, \lambda y) = \lambda^n \cdot N(x, y)$: This part is homogenous

∴ The total equation is homogenous.

M(x,y) والدالة M(x,y) والدالة λ^n والدالة

To solve this equation, always assume:

 $y = u \cdot x$

 $dy = u \cdot dx + x \cdot du$

عند اجراء هذا التعويض فأن المعادلة التفاضلية دائما تتحول الى دالة قابلة للفصل وبذلك يسهل حلها. وبعد الحصول على الحل نعوض بدل كل u:

$$u = \frac{y}{x}$$

Example (1): Prove that the function is homogenous:

$$\frac{dy}{dx} = \frac{x - y}{x + y}$$

Solve:

$$(x+y) dy = (x-y)dx$$

$$M(x,y) = (x - y)$$

$$M(\lambda x, \lambda y) = (\lambda x - \lambda y)$$

$$=\lambda(x-y)=\lambda\,M(x,y)$$
 : hom.

$$N(x,y) = (x+y)$$

$$N(\lambda x, \lambda y) = (\lambda x + \lambda y) = \lambda (x + y) = \lambda N(x, y)$$
 : hom.

: The total equation is homogenous.

Example (2): Find the general solution for $(x^2 + 3y^2)dx = 2xy dy$: **Solve:**

$$M(x, y) = (x^2 + 3y^2)$$

$$M(\lambda x, \lambda y) = (\lambda^2 x^2 + 3\lambda^2 y^2)$$
$$= \lambda^2 (x^2 + 3y^2) = \lambda^2 M(x, y) \quad \therefore hom.$$

$$N(x,y) = 2xy$$

$$N(\lambda x, \lambda y) = 2\lambda x \cdot \lambda y = \lambda^2 \cdot 2xy = \lambda^2 N(x, y) : hom.$$

∴ The total equation is homogenous.

To solve this equation, assume:

$$y = u \cdot x$$
 and $dy = u \cdot dx + x \cdot du$

$$(x^2 + 3u^2x^2)dx = 2ux^2 (u \cdot dx + x \cdot du)$$

$$x^2 dx + 3u^2x^2 dx = 2u^2x^2 dx + 2ux^3 du$$

$$x^2 dx + u^2 x^2 dx = 2ux^3 du$$

$$(1+u^2)x^2 dx = 2ux^3 du \rightarrow \text{re} - \text{arrangement}$$
:

$$\frac{dx}{x} = \frac{2u}{(1+u^2)} du$$
 by integral

$$ln x = ln(1 + u^2) + c \rightarrow ln x - ln(1 + u^2) = c$$

$$\ln \frac{x}{(1+u^2)} = c$$
نأخذ e نأخذ

$$\frac{x}{(1+u^2)} = e^c = k$$

but $u = \frac{y}{x}$ lead to:

$$\frac{x}{1 + \frac{y^2}{x^2}} = k \qquad \rightarrow \qquad \frac{x^3}{x^2 + y^2} = k$$

Example (3): Find the general solution for $y^2dx + x^2dy = 2xy dy$?

Solve:

$$y^2 dx = 2xy \, dy - x^2 dy$$

$$y^2 dx = (2xy - x^2) dy$$

$$M(x,y) = y^2$$

$$M(\lambda x, \lambda y) = \lambda^2 y^2$$

$$= \lambda^2 M(x, y) : hom.$$

$$N(x,y) = (2xy - x^2)$$

$$N(\lambda x, \lambda y) = (2\lambda x \, \lambda y - \lambda^2 x^2) = \lambda^2 \cdot (2xy - x^2)$$

$$= \lambda^2 N(x,y) \quad \therefore hom.$$

: The total equation is homogenous.

To solve this equation, assume:

$$y = u \cdot x$$
 and $dy = u \cdot dx + x \cdot du$

$$u^2x^2dx = (2ux^2 - x^2)(u \cdot dx + x \cdot du)$$

$$u^2x^2 dx = 2u^2x^2 dx + 2ux^3 du - ux^2 dx - x^3 du$$

$$ux^2 dx - u^2x^2 dx = 2ux^3 du - x^3 du$$

 $(u - u^2)x^2 dx = x^3(2u - 1) du \rightarrow \text{re} - \text{arrangement:}$

$$\frac{1}{x}dx = \frac{(2u-1)}{(u-u^2)}du \times \frac{-1}{-1}$$
 by integral

$$ln x = -ln(u - u^2) + c \quad \rightarrow \quad ln x + ln(u - u^2) = c$$

$$\ln(x(u-u^2)) = c$$
 نأخذ e للطرفين

$$xu - xu^2 = e^c = k$$

but
$$u = \frac{y}{x}$$
 lead to:

$$x\frac{y}{x} - x\frac{y^2}{x^2} = k$$
 \rightarrow $y - \frac{y^2}{x} = k$ $\times x$

$$xy - y^2 - kx = 0$$

Problems:

1. Find a particular solution for $(3y^3 - x^3)dx = 3xy^2 dy$, if x = 1, y = 2.

Answer: $y^3 = x^3 (8 - \ln x)$

2. Solve $2x(x+y)dx + (x^2+y^2) dy = 0$

Answer: $2x^3 + 3x^2y + y^3 = k$