

Computer Techniques Engineering Department

College of Engineering and Technology Al-Mustaqbal University

Networking Basics

Dr. Noor AbdAlKarem Mohammedali

Table of contents

- Networking Terminology
- ☐ Common Physical and Logical Topologies
- **☐** Networking Architectures and Protocols
- ☐ Open Systems Interconnection (OSI) Model
- Network Elements

Introduction

This presentation covers the essential networking concepts, including terminology, topologies, architectures, protocols, and key network elements that form the backbone of modern communication.

Networking Terminology

- Node: Any device connected to a network.
- Host: A device identified by a unique IP address.
- Packet: A unit of data transmitted across a network.
- Protocol: A set of rules for data transmission (e.g., TCP/IP).
- Bandwidth: Maximum data transfer rate of a network.
- Latency: Delay between sending and receiving data.
- Throughput: Actual data transfer rate achieved.
- IP Address: Unique address for each device on a network.

Common Physical and Logical Topologies

Network topology refers to the arrangement of devices in a network.

Physical Topologies focus on cable and device layout.

- Bus Topology: All devices share a common backbone.
- Star Topology: All devices connect to a central hub.
- Ring Topology: Devices connected circularly.
- Mesh Topology: Every device connects to every other device.

Logical Topologies refer to data transmission methods.

- Logical Bus: Data travels over a shared communication line.
- Logical Star: Data passes through a central hub.

Lagical Ding. Data may as in a sireular direction

Networking Architectures and Protocols

Network Architectures define how resources are shared.

- 1- Client-Server Architecture: A centralized server provides resources.
- 2- Peer-to-Peer (P2P) Architecture: Each node acts as a server and client.

Protocols define data transmission between devices.

TCP/IP: Foundational protocol of the internet.

UDP: Faster, connectionless protocol for streaming.

HTTP/HTTPS: Protocols for transmitting web data.

FTP: Used to transfer files over a network.

Open Systems Interconnection (OSI) Model

The OSI model is a seven-layer framework for networking protocols.

- Physical Layer: Transmits raw data over media.
- > Data Link Layer: Reliable transmission management.
- Network Layer: Handles routing of data.
- Transport Layer: End-to-end communication.
- Session Layer: Manages application sessions.
- Presentation Layer: Translates data formats.
- Application Layer: Provides services to applications.

Network Elements

Hubs connect multiple computers and broadcast data to all devices, leading to congestion.

Layer 2 Switches operate on MAC addresses, forwarding data only to intended devices.

Layer 3 Switches can forward data based on IP addresses, allowing advanced routing.

Routers connect different networks, analyze IP addresses, and manage data routing.

Conclusion

Understanding networking terminology, topologies, architectures, and devices is crucial for delving into complex networking concepts. The OSI model provides a structured method for analyzing data flow, while elements like hubs, switches, and routers efficiently manage communication.

Do you have any questions?

د.م نور عبدالكريم محمدعلي

noor.abdulkareem@uomus.edu.iq