A SOLUTION OF THE PROPERTY OF

Al-Mustaqbal University Department of of Power Mechanics Engineering Techniques Class (2nd)

Subject (Math-2)

Derivative Rules: a décimble uses
what is a derivative? [airis colo The derivative is finding a slope at any pin the UT of the start co result
Before we go over the derivative Rules, lot introduce the definition of the derivative Fermula
Definition of the Derivative Formula :-
By using the limit process as
$\frac{\partial F}{\partial x} = F(x) = \lim_{\Delta x \to 0} \frac{F(x+\Delta x) - F(x)}{\Delta x}$
Excel find $\frac{dF}{dx}$ of the following equation by normy the definition of the derivative $F(x) = 5x - 2$
-50 h-
F(x+ax) = 5(x+ax)-2 $F(x) = 5x-2$ plug the above two eq. sinto eq. B
$\frac{df}{dx} = f'(x) = \lim_{\Delta x \to 0} \frac{5(x+\Delta x)-2-(5x-2)}{\Delta x}$
= lim 8x = 5 ax - 8x + 12

AL CANADA TO THE PARTY OF THE P

Al-Mustaqbal University

Department of of Power Mechanics Engineering Techniques

Class (2nd)

Subject (Math-2)

ER @ By using the definition of the derivation
find of for the following eqs, F(x)=x2
501.
df = e'm = 6 F(K+ak) - F(K)
dr = p'ox = lim f(k+ak) - f(k) ak = ak
$\star F(K+\alpha K) = (K+\alpha K)^2$
$F(x) = x^2$
1-00) = 12-
- df (K+ax)2 - x2 (K+ax) (X+ax) - x2
: df = lim (x+ax)2 - x2 = lim (x+ox)(x+ax) - x2
$=\lim_{\Delta X \to 0} \frac{\chi^2 + \alpha X \cdot X + \alpha \chi^2 - \chi^2}{\alpha \chi} = \lim_{\Delta X \to 0} \frac{2 \chi \alpha \chi}{\alpha \chi} + \alpha \chi^2$
ak-so ax ax-
(0×(2× 0×)
= lim ax (2x+ax) = lim (2x+ax)
$\frac{df}{dx} = 2x + 0 = \boxed{2x}$
~ · - · · · · · · · · · · · · · · ·
By sour own exp. try to 12 mol of for the
Rollowing eggs using the def.
$1 - \frac{1}{2}(X) = \frac{1}{X}$
 2- F(x) = Vx
3- F(x)= 5
$6 - 12(x) = x^2 - 2x + 4$
, , , , ,
· ·

Department of of Power Mechanics Engineering Techniques Class (2nd)

Subject (Math-2)

The Dornative Rules , asimily 150	-
O constant desirative CI21 àcide	
$F(x)=a \implies \frac{dF}{dx}=F'(x)=2eno$, $q=cons$	fant
2 varsable derivativo reil airie	
$F(k) = x^n \longrightarrow \frac{df}{dk} = f'(k) = n k^{n-1}, n = any$	no.
3) Multi-variable Funs self & West asine	
$f(x) = h(x) \mp g(x) \implies \frac{dF}{dx} = F'(x) = h'(x) \mp g'(x)$	
4) Quotient Funs viils amo asimo	
$f(x) = \frac{h(x)}{g(x)} \implies \frac{df}{dx} = f'(x) = \frac{g(x) - h'(x)}{(g(x))^2} = \frac{h(x) - g'(x)}{(g(x))^2}$	
(5) Product Fins civilis of actives	
$F(x) = h(x) \cdot g(x) \Rightarrow \frac{dF}{dx} = f'(x) = h(x) \cdot g'(x) + g(x) \cdot h'(x)$)
@ Power raised Fing on 8 750 715 air	
$f(x) = [h(x)]^n \Rightarrow \frac{df}{dx} = f'(x) = n [h(x)]^{n-1} \cdot h'(x)$	

ALVANDER DE LA CONTRACTION DEL CONTRACTION DE LA CONTRACTION DE LA

Al-Mustaqbal University

Department of of Power Mechanics Engineering Techniques Class (2nd)

Subject (Math-2)

	Examples 1:-
	1- F(x) = 4 -> F'(x) = Zero
	$2-\varphi(x)=\chi$ \Longrightarrow $\varphi'(x)=1$
	$3 - F(x) = x^4 \implies F'(x) = 4 x^3$
	$F(x) = 5x^3 \implies F(x) = 5x^2 = 15x^2$
	$5 - F(x) = \chi^{-3} \implies F'(x) = -3 \chi^{3-1} = -3 \chi^{4} = \frac{-3}{364}$
	$5 - F(x) = \chi^{-3} \implies F'(x) = -3 \chi^{-3-1} = -3 \chi^{-4} = \frac{-3}{3 \times 4}$ $6 - F(x) = \sqrt{\chi} \implies F(x) = \chi^{1/2} \implies F'(x) = \frac{1}{2} \chi^{\frac{1}{2} - 1} = \frac{1}{2\sqrt{\chi}}$
	$7 - F(x) = \sqrt[5]{x^2} \implies F(x) = x^{\frac{2}{5}} \implies F(0) = \frac{2}{5}x^{\frac{2}{5}-1} = \frac{2}{5}x^{\frac{2}{5}} = \frac{2}{5}x^{\frac{2}{5}$
	$8 - F(x) = 3x^5 + 7x \implies F(x) = 3 \times 5 \times 4 = 15 \times 4 = 7$
- 10	$q = F(x) = (x^4 - x^2 + 1)(5x^6 - 3x) \Rightarrow f^2(x) = (x^4 - x^2 + 1)(30x^3 - 3) +$
	(5)(6-3x)(4x3-2x)
	$ u - F(x) = \frac{x^3 + 1}{x^4 + 1} \implies F'(x) = \frac{(x^4 + 1)(3x^2) - (x^3 + 1)(4x^3)}{(x^4 + 1)^2}$
	$\chi^{4}+1$ $(\chi^{4}+1)^{2}$
. 4	$ - ^{2}(\chi) = (\chi^{3} + \chi^{2} + \chi + 1)^{5} \Rightarrow f'(\chi) = 5(\chi^{3} + \chi^{2} + \chi + 1)^{4} \times (3\chi^{2} + 2\chi + 1)$ $ 2 - f(\chi) = \sqrt{\chi^{2} - 2\chi + 1} \Rightarrow f'(\chi) = \frac{2\chi - 2}{2\sqrt{\chi^{2} - 2\chi + 1}}$
	$\frac{12-f(x)-\sqrt{x^2-2x+1}}{2\sqrt{x^2-2x+1}}$
	EX @/ Find the derivative of the quotient Pun
-	$at \ \chi = 1 , F(x) = \frac{\chi^3 + 1}{\chi^4 + 1}$
	[408]
	From GK3 # 10 = F'(x) = (14+1) (3+13) - (13+1) (4+13)
	X=1 (1 ⁴ +1) ²
	243-244 6-8
-	2 *3 - 2 * 4 6 - 8
-	

AL HANDING THE PROPERTY OF THE

Al-Mustaqbal University

Department of of Power Mechanics Engineering Techniques Class (2nd)

Subject (Math-2)

$F'(x) = \sin x \qquad F'(x) = \cos x$ $F'(x) = \cos x \qquad \Rightarrow F'(x) = -\sin x$ $F'(x) = \cot x \qquad \Rightarrow F'(x) = -\csc^2 x$ $F'(x) = \cot x \qquad \Rightarrow F'(x) = -\csc^2 x$ $F'(x) = \sec x \qquad \Rightarrow F'(x) = -\csc x \qquad \cot x$ $F'(x) = \csc x \qquad \Rightarrow F'(x) = -\csc x \qquad \cot x$ $F'(x) = \csc x \qquad \Rightarrow F'(x) = -\csc x \qquad \cot x$ $F'(x) = -\csc x \qquad \Rightarrow F'(x) = -\csc x \qquad \cot x$ $F'(x) = -\csc x \qquad \Rightarrow F'(x) = -\csc x \qquad \cot x$ $F'(x) = -\csc x \qquad \Rightarrow F'(x) = -\csc x \qquad \cot x$ $F'(x) = -\csc x \qquad \Rightarrow F'(x) = -\csc x \qquad \cot x$ $F'(x) = -\csc x \qquad \Rightarrow F'(x) = -\csc x \qquad \cot x$ $F'(x) = -\csc x \qquad \Rightarrow F'(x) = -\csc x \qquad \cot x$ $F'(x) = -\csc x \qquad \Rightarrow F'(x) = -\csc x \qquad \cot x$ $F'(x) = -\csc x \qquad \Rightarrow F'(x) = -\csc x \qquad \cot x$ $F'(x) = -\csc x \qquad \Rightarrow F'(x) = -\csc x \qquad \cot x$ $F'(x) = -\csc x \qquad \Rightarrow F'(x) = -\csc x \qquad \cot x$ $F'(x) = -\csc x \qquad \Rightarrow F'(x) = -\csc x \qquad \cot x$ $F'(x) = -\csc x \qquad \Rightarrow F'(x) = -\csc x \qquad \cot x$ $F'(x) = -\csc x \qquad \Rightarrow F'(x) = -\csc x \qquad \cot x$ $F'(x) = -\csc x \qquad \Rightarrow F'(x) = -\csc x \qquad \cot x$ $F'(x) = -\csc x \qquad \Rightarrow F'(x) = -\csc x \qquad \cot x$ $F'(x) = -\csc x \qquad \Rightarrow F'(x) = -\csc x \qquad \cot x$ $F'(x) = -\csc x \qquad \Rightarrow F'(x) = -\csc x \qquad \cot x$ $F'(x) = -\csc x \qquad \Rightarrow F'(x) = -\csc x \qquad \cot x$ $F'(x) = -\csc x \qquad \Rightarrow F'(x) = -\csc x \qquad \cot x$ $F'(x) = -\csc x \qquad \Rightarrow F'(x) = -\csc x \qquad \cot x$ $F'(x) = -\csc x \qquad \Rightarrow F'(x) = -\csc x \qquad \cot x$ $F'(x) = -\csc x \qquad \Rightarrow F'(x) = -\csc x \qquad \cot x$ $F'(x) = -\csc x \qquad \Rightarrow F'(x) = -\csc x \qquad \cot x$ $F'(x) = -\csc x \qquad \Rightarrow F'(x) = -\csc x \qquad \cot x$ $F'(x) = -\csc x \qquad \Rightarrow F'(x) = -\csc x \qquad \cot x$ $F'(x) = -\csc x \qquad \Rightarrow F'(x) = -\csc x \qquad \cot x$ $F'(x) = -\csc x \qquad \Rightarrow F'(x) = -\csc x \qquad \cot x$
3- $F(x) = \tan x$ $\Rightarrow F'(x) = \sec^2 x$ 4- $F(x) = \cot x$ $\Rightarrow F'(x) = \sec x \cot x$ 5- $F(x) = \csc x$ $\Rightarrow F'(x) = \csc x \cot x$ 6- $F(x) = \csc x$ $\Rightarrow F'(x) = \csc x \cot x$ Ex 6) Find the derivative of the eqs $F(x) = 5 \sin x - 4 \tan x$ [Soh]
. 4- $F(x) = \cot x$ $\Rightarrow F'(x) = -\csc^2 x$ 5- $F(x) = \sec x$ $\Rightarrow F'(x) = -\csc x$ tank 6- $F(x) = \csc x$ $\Rightarrow F'(x) = -\csc x$ cot x Ex. (3) Find the derivative of the eq. $F(x) = 5 \sin x - 4 \tan x$ [Sol)
5- $F(x) = \sec x \implies F'(x) = \sec x \tan x$ 6- $F(x) = \csc x \implies F'(x) = \csc x \cot x$ Ex 6) Find the derivative of the eqs $F(x) = 5 \sin x - 4 \tan x$ [Sol)
$6-F(x) = \csc x \longrightarrow F^{l}(x) = -\csc x \cot x$ $Ex(5) \text{Find the derivative of the eqs}$ $F(x) = 5 \sin x - 4 \tan x$ $[50h]$
EXE) Find the derivative of the eqs F(X) = 5 sinx - 4 tanx [Sol)
F(x) = 5 sinx - 4 tanx [Soh]
[50L]
$F'(x) = \frac{dF}{dx} = 5 \cos x - 4 \sec^2 x$
ENG) Find dx [8 seex - 5 cosx]
[80]-1
F'(K) = 8 seex tank - 5 (- sink) F'(K) = 8 seex tank + 5 sink
ind of [2 cotx - 7 ESCX]
1501-J
$f'(x) = 2(-cse^2x) - 7(-csex cotx)$ $f'(x) = -2 cse^2x + 7 cssx cotx$

A According to the second seco

Al-Mustagbal University

Department of of Power Mechanics Engineering Techniques Class (2nd)

Subject (Math-2)

Lecturers (Dr Hussein K. Halwas & M.Sc. Hiba Mohsin Abid) 1st term – Lect. (General Review on Diveritive and Integration)

Chain Rule Z=F(x) & X=9(4), then And If 2 = f(x) & X = g(u) & U = h(w) So, the chain rule is using wheneve one a nested Functions , i e one Function inside of another function قاعرة السلمة عدما يكون لدينا ووال متدلخلة ، عفي Denve y = (sin(x3 +6))2 501-1 y'(x) = 2 (sin (x3+6)) x cos(x3+6) x 3x حدًا تم المنقاق القوم ومن شم طوافل الفقل وهو دالم الحيب الزوج في والم الحب وبدا كالما المالية دعال متعالمة فاستماء عاعد السلمة.

Al-Mustaqbal University Department of of Power Mechanics Engineering Techniques

Class (2nd)

Subject (Math-2)

Dersvatine Applications 5624 0 lember
IF the time is denoted by t, and s(t) is a location or a displacement Function (first ip) in its
Then,
- Velocity = V(t) = 5'(t) (as 11)
- Acceleration = a(t) = V'(t) (desil)
Velocity is gonna have a sign associated with
it either positive or nagative, ine exther moving to the right or to the left or it
maybe moving away or back in
الملاعلة الون لو المارة وافقة . عني أما موجهة أو بالية , على
معربة اذا كان الحر ينولا ستعدا وسابة اذا على دلا أو
We have anothe term, named by speed,
which is always positive, so we need to take the absolute value velocity to get
the speed
speed = \ V(+)]
المطا الكافي الذي نقو وكرة هو مع المدين كون موجي واك" واك" والحاسم والحاسم المدين عادماً المدين على مع الماسكون مع جياً واك"

Department of of Power Mechanics Engineering Techniques Class (2nd)

Subject (Math-2)

	the following equation of motion descripes
	The displacement (in meter) of a particle moving in a shaight line
	wher t is measured in seconds
	a- find the volocity after t=2 seconds? b. Find the acceleration after t=2 seconds?
	Solutions
_ a-	$V(t) = S'(t) = 5(3t^2) + 3$
	$= 15 t^2 + 3$ after 2 seconds $\Rightarrow t=2$
	$V(2) = 15(2)^{2} + 3 = 15 * 4 + 3$ V(2) = 63 M/see Ans @
<u>b</u>	a(t) = v'(t) = 5''(t) = 15 (2t)
	$= a(2) = 30(2) = 60 \text{ m/see}^2$ Ans B

AL HANDING THE PROPERTY OF THE

Al-Mustagbal University

Department of of Power Mechanics Engineering Techniques Class (2nd)

Subject (Math-2)

Lecturers (Dr Hussein K. Halwas & M.Sc. Hiba Mohsin Abid) 1st term – Lect. (General Review on Diveritive and Integration)

Darvathe of Hyperbolic Functions &s of de sinhu = cosh u * u' @ du cosh u = sinh u * u' 3 du tanhy = soch 24 · u' Od sechu = - sechutanhu +u' & of cosechu = - cosech u coth u * u' 6 d coth u = cosech 2 u * u' Find the derivative of $y = 4 = \sinh 2k - \frac{3}{7} \cosh 3k$ dy = 5 (seeh 2 x 1)-2 (-coseh 4x x 4) = 5 sech 2 + 8 cosech 2 4x

Department of of Power Mechanics Engineering Techniques Class (2nd)

Subject (Math-2)

	ne Derivative	الزائدية	الدوال	معلوس	<u>aerdio</u>
0-8	de sinh'u	√ U² + 1			
0 9	d cosh'u =	U¹ √U²-1			
3 0	k tanh'u =	1-U2			
—	d cosech'	w = - w	U2	7	
⑤ €	x sechlu	$=\frac{-u'}{u\sqrt{1-u^2}}$			
6	hic coth'u =	u1 1-U2			4
13x	Find the	derivative a	of y	- smb	1(4)
	80.				
ل م	$\frac{y}{\sqrt{(4x)^2+1}}$	$= \frac{4}{\sqrt{16 x^2}}$	<u>.</u>	- V	
	$\frac{4}{\sqrt{(4x)^2+1}}$ $\frac{2}{\sqrt{3x^2}}$		×3)		
2	$\frac{y}{\sqrt{(4x)^2+1}}$ $\frac{y}{\sqrt{(4x)^2+1}}$ $\frac{50}{\sqrt{3x^2}}$	y = Codi'(x ³)		

AL ACTION OF THE PARTY OF THE P

Al-Mustaqbal University

Department of of Power Mechanics Engineering Techniques Class (2nd)

Subject (Math-2)

Integration 20 Jollin
The process of integration reverses the process of differentiation.
If $f(x) = 2x^2 \longrightarrow f'(x) = 4x$. The integration of 41k is $2x^2$.
Integration is a process of summation or ading parts together & an elongated 5, shown as so, is used to replace the words "the integral"
Types of Integration 2= UMI 2501
D Indefinite Integrals 25 16115 Integrals containing an arbitrary constant "C" in their results. This constant needs Further Infos to be found/calculated.
2) Definite Integrals 25 ULF Integration limits are applied (U) 2010 gt &
Is an expression is written as [X]a b is called the upper limit and a is the lower limit, where
[Ex] = D=3

Department of of Power Mechanics Engineering Techniques

Class (2nd)

Subject (Math-2)

	The process of Integration is better the
	In integration, the variable of Megration is shown by adding d (the derivative) after the
	Thus, S4X dx means "the integral of 4X with
	and settle means " the integral of 2t with
	Soly = X + C
	$\int dy = y + C$ $\int dt = t + C$
	Standard Integrals on autocket
	1) Integral of constant = Sadx = ax + c), ancons
	@ power raised variable = Jax dx = axn+1 + c
	Examples $ \begin{array}{c} \text{Examples} \\ \text{O} \int 3x^2 dx = 3x^2 dx = \frac{3x^2+1}{241} + c = \frac{3}{3}x^3 + c \end{array} $
	$2 \int 3x^4 dx = \frac{3x^{4+1}}{4+1} + c - \frac{3}{5}x^5 + c$
	$3) \int_{\chi^{2}}^{2} dx = \int_{\chi^{2}}^{2} \chi^{2} dx = \frac{2\chi^{2}}{-2+1} + C = \frac{2\chi^{2}}{-2} + C$
	$6) \int \sqrt{x} dx = \int x^{\frac{1}{2}} dx = \frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1} + C = \frac{x^{\frac{3}{2}}}{\frac{3}{2}+1} + C$
CS	= 3/x +c)

AL CONTROL OF THE PARTY OF THE

Al-Mustagbal University

Department of of Power Mechanics Engineering Techniques Class (2nd)

Subject (Math-2)

Lecturers (Dr Hussein K. Halwas & M.Sc. Hiba Mohsin Abid) 1st term – Lect. (General Review on Diveritive and Integration)

 $5) \int (3x + 2x^{2} - 5) dx = \int 3x dx + \int 2x^{2} dx - \int 5 dx$ $= 3 \frac{x^{1+1}}{1+1} + 2 \frac{x^{2+1}}{2+1} - 5x + C$ Integrals of the Trigonometric functions 3 = Of cos ax dx = 1 sinax +c 3) socax dx = 1 tanax +c 4) Sesc2 ax dx = 1 cotax +c 6) Sosc ax cotax dx = - 1 cscax + c 6) Sec ax tan ax dx = 1 secar +C O S[8Cosx +3 sinx]dx See 2 x - Seex tank] dx 3) Scscx (cotx - cscx)dx = S(esex estx - csc2x) dx FUTT CESTS COLOTX) +C = Cotx - CSCX+C

AL AND THE PROPERTY OF THE PRO

Al-Mustagbal University

Department of of Power Mechanics Engineering Techniques Class (2nd)

Subject (Math-2)

Lecturers (Dr Hussein K. Halwas & M.Sc. Hiba Mohsin Abid)

1st term – Lect. (General Review on Diveritive and Integration)

4) f cos3 x dx = f cos2x cosx dx = f(1-smix) cuskdx 5) f cox 5x dx = f cus 4x evsx dx = f (cos2x)2 coskdx = [(1-5m2x)2 cosx dx olu = cos x dx $= \int (1-u^2)^2 du = \int (1-u^2)(1-u^2) du$ $= \int (1-2u^2+u^4) du$ $= u - \frac{2}{3}u^3 + \frac{u^5}{5} + C$ replace u with $\frac{2}{5}$ with $\frac{2}{5}$ cos $\frac{2}{5}$ Integration of Inverse Trigon metric Functions Of du = sm'(4) +c @ 5 du = 1 ton (4) +c 3 5 du = 1 see (4) +c @ ∫ -du = cos¹(u)+c 6) 5 -du = 1 cot (4) +c BS -dy = 1 cx (4) +C

Department of of Power Mechanics Engineering Techniques Class (2nd)

Subject (Math-2)

AL ACTION OF THE PARTY OF THE P

Al-Mustaqbal University

Department of of Power Mechanics Engineering Techniques Class (2nd)

Subject (Math-2)

Integration of Logarithm & Exponential Fins on
مكامل الدول اللوغار لقية والاسب
O Shogu du = U. loga (U) + U = linear Frnetier
GXOI SIOQX dx
(504)
u=x -> u' =1
a=4
(- (*)
S log x dx = x log 4(2) + c = [x log 4(x) + c]
5x@ Slog_(x+7) dx
$U = x + 7 \longrightarrow U' = 1$
0=5
$\int \log_5(x+7) dx = \frac{(x+7) \log_5(\frac{x+7}{e})}{1} + C = \frac{(x+7) \log_5(\frac{x+7}{e})}{5} + C$
EXO) Slog x4 dx
Sold and the mansoulate the
In such a problem of the restry the formula
Sigg x dx = 4 Sigg x dx = (U= x = 1)
4.x 12/2(2)
= 4x log_(X)+c
77.9

At well and the second of the

Al-Mustagbal University

Department of of Power Mechanics Engineering Techniques Class (2nd)

Subject (Math-2)

Lecturers (Dr Hussein K. Halwas & M.Sc. Hiba Mohsin Abid) 1st term – Lect. (General Review on Diveritive and Integration)

GK) Slog_(X2+8K+16) dx Slog (x2+8x+16)dx=Slog (x+4)2 dx = 25 1092 (X+4) dx / U= 12+4 = W1 2 (x+4) log (x+4) +c DS 7 dx = 75 to dx = [7 lox + C] 2) S 1 dx = (n(x+5)+C) 3 5 5 dx = 5 5 x -2 = 2 5 (-2) dx = -5 ln (6-2K) +C $I_{1} \int \frac{\chi}{v^{2}-2} d\chi = \int \frac{\chi}{v^{2}-2} d\chi \frac{2}{2} - \frac{1}{2} \int \frac{2\chi}{\chi^{2}-2} d\chi$ $e^{2x} dx = \int e^{2x} dx + \frac{2}{2} = \frac{1}{2} \int e^{2x} x^2 dx$

A A CONTROL OF THE PARTY OF THE

Al-Mustaqbal University

Department of of Power Mechanics Engineering Techniques Class (2nd)

Subject (Math-2)

Lecturers (Dr Hussein K. Halwas & M.Sc. Hiba Mohsin Abid) 1st term – Lect. (General Review on Diveritive and Integration)

Integrals of Hyperbolic Function 300 1/1 Den ULE كامل الموال الترامية عن قامة عكى المنقلي هذه الموال الا فرَ يَوْ الاعتبار مستقة القمة العودة عَدَ المالة الزالاب @ Ssinh ax dx = 1 coshax +C 2) Scoshar du = d sinharte 3) (sech ax dx = 1 tanh ax +C (4) [sech ax tanhax dx = -] sech ax +C (5) Scosechar cothar = - 1 cosechar +c 6) Scosechak dx =-1 cothak +c Examples/ 1) (Cosh (2k) dx = 1 sinh (2k) + C 2) S sinh (2K+5) dx = 1 cosh (2K+5) + C IP & S Coth x dx = S cosh x dx = lalsinhx1+e Seeh x tanh x dx = Seeh x seeh x town kdp عَلَى إِحْدَام عَاسِم السلم العَيْمار (Seeligh) والله مرتوعة by velic (sears), 21 12 + 2020 6 20 1 21271 2000 cur Lo South weekk touch dx = [] sech 3 + C) Are Stanger de la como de

نهاية محاضرة "General Review on Derivative and Intergration" مراجعة عامة عن المشتقة والتكامل