EXAMPLES ABOUT LAPLACE TRANSFORM (APPLICATIONS)
CIRCUIT ANALYSIS:

The Laplace transform actually gained its popularity from its use in analyzing electrical
circuits due to Oliver Heaviside, an electrical engineer. By using Laplace transforms we can
analyze an electrical circuit to discover its current, its maximum capacity and figure out if
anything is wrong with the circuit. This is crucial for engineers, electrical engineers in
particular, in doing their jobs to ensure the necessary machines and technology is working

properly.

To start, let's show how this works in a simple RLC circuit. However, this does not mean it
isn't used for more advanced types of circuits as well. For a visual aid, here is a diagram of a
RLC circuit:
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First let's identify the individual symbols on the circuit and what they mean. Also, while
doing this it would help to identify what is used to measure each of these different pieces of
the circuit for future reference. The symbols are as follows: R means resistor which is
measured in ohms, L means the inductor which has inductance measured in henrys, Cis the
capacitor which has capacitance measured in farads and finally, V stands for the generator
or battery and is measured in volts. Something to note is that another symbol commonly
used for VVis £ when making diagrams of circuits. We can measure the charges of the
capacitors and the currents by modeling them as functions of time. The equation that is
used to model circuits and then subsequently used to analyze the circuits after solving it is as
follows,

V(t)=RI+L'+éQ

The remaining variable left to be defined is @, which is normally the variable used to
represent the charge of a circuit. 1] We get this equation due to the fact that the voltage
drop across a circuit is modeled by the following equations;

o The voltage drop across a resistor of a circuitis modeled by RI where J = &

o Across an inductor it is modeled by L4, and since we know [ = %, we simplify
this to get L%? which we can then reduce even further to LI,

o Across a capacitor it is modeled by #Q

o Across a generator it's modeled by -V



By taking the Laplace transform of this equation, after plugging in values for the indi-
vidual pieces of the circuit, and manipulating the resulting equation to take the inverse
transform we can get a final solution to our circuit.

Before we go further, it is necessary to note that when we acquired the equation for V(t),
we actually used Kirchhoff’s Laws. [1] Due to the necessity of knowing these laws when
doing circuit analysis, they are as follows:

1. The algebraic sum of the currents flowing toward any junction point is equal to
Zero.

2. The algebraic sum of the potential drops, or the voltage drops, around any closed
loop is equal to zero.

The first of these two laws is often referred to as Kirchhoff’s Current Law and the second
of the two as Kirchhoff’s Voltage Law. These two laws are extremely important to circuit
analysis, as without them, the equation that we are using to model the circuit would not
work. In some cases, only of the laws needs to be applied to get the equations. However,
this is usually due to it being a rather simple circuit, such as the circuit in the first
example.

Now that the circuit’s components have been labeled we can showcase how exactly

a Laplace transform is used in an introductory example followed by a more complex
example.

EXAMPLE 1:

.02 farads
4 henry
20 ohms
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Based on the diagram above, our circuit has an inductor of 4 henrys, a resistor of 20
ohms and a capacitor of .02 farads. As for the charge and current, let’s set a condition
so that the charge on the capacitor, and current in the circuit, be 0 at t=0. Let’s find
the charge on the capacitor at any time t besides 0, where V is equal to 200 volts. So
then we get the following,

dl
4E+201+éﬁ?=200
Since [ = 42, 2
Q dQ _
4'#2 +2Ddt +50Q = 200

It is important to take into account that we have the following initial conditions due to
our charge at ¢t = 0 being 0.



1. Q) =0

2. Q'(0)=0

Now, we know the following is true
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With this, we can rewrite the original equation
Q" +5Q' +2Q =50
Now, we take the Laplace transform 55
L{Q" +5Q" + ?Q} = L{50}

50

= {0 - 5Q(0) ~ Q'(0)} +5{s0 — QO)} + 4= >

Recall our initial conditions to simplify this further

q(s® + 55 +12.5) = 2
s

B 50

s(s2+5s+ %)
The goal is to take the inverse Laplace transform so that we can get the answer back in
the original domain of time, but as of right now it isn't clear what function we get when
taking the inverse transform. Since it isn't clear what the inverse transform function
would be, we need to manipulate the equation. To start is partial fraction expansion of
the equation, by doing this we get

50 A Bs+C

s +55+38) 5 F+5s5+3

=q

So, by way of doing partial fraction expansion
50=A{32+5s+-22—5)+ Bs®+Cs

From here we solve for the individual variables. By plugging in 0 for s, we solve for A.
Then if we plug that solution back in we can find B and C. By doing this, we end up
with the following for the individual variables:

e A=4
e B=-4

e C=-2



Now, we just plug these back into the original equation

4 —45 — 20

S
s s2+5s+%

From here we manipulate the equation to fit one in the form from the table.

4 s+% 1
PPN IS T
With the equation now fitting the table on Laplace transforms, we can take the inverse
transform 5
4 §+3 1

L Y- -t = 10—
{5 (s+3)P2+2 (s+%)2+":‘—5}

=4- 4e-%‘c05(gt) - 48“%‘55"@*)

Clarifications:

—4s 20

52+55+% sz+55+275

-4((s+5/2-5/2) /(s* +55 +25/2 +25/4 — 25/4)) - 20/(s* + 55 +25/2)
-4(s+5/2)/( s> + 5s + 25/4 +25/4)= -4(s+5/2)/(s+(5/2))+25/4= -4cos 5/2 t e/?"
+ 10/ (s° +5s + 25/2+25/4-25/4) — 20/( s> +5s + 25/2+25/4-25/4)

-4 cos 5/2 t e**'-10/((s + 5/2)* + 25/4) multiply and divided the second term by 5/2 -4 cos
5/2 t et —10%2/5 * (5/2)/((s +5/2) + 25/4)= -4 cos 5/2 t €' -4sin5/2 t. e/*"

Solve the following differential equations:

Laplace Transform in Simple Electric Circuits:

Consider an electric circuit consisting of a resistance R, inductance L, a condenser of
capacity C and electromotive power of voltage E in a series. A switch is also
connected in the circuit. Then by Kirchhoff’s law, we get:

ar 2=
L—+RI+==E.

E(f)T:L_’l_O/ | 1c
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Example: An inductance of 3 henry, a resistor of 16 chms
and a capacitor of 0.02 farad are connected in series with an

emf of 300 volts. At t = 0, the charge on the capacitor and

current in the circuit is zero. Find the charge and current at
any time t > 0.

Solution:

Let @ and [ be instantaneous charge and current
respectively at time £,
Then by Kirchhoff's law

ar Q-
L_+RI+-=E

2—+16—+50Q E.(=1=22

de

2
d*Q  _dQ
8—+ 25Q = 150
R TR T

Appliymg Laplace  Transform on both sides, 1
]+ 8L [‘"'?] + 25L[Q] = L[150] |

1

« {s?L[Q] - 5Q(0) - @'(0)} + 8{sL[@] - @(0)} + 25L[Q] = 15[”'['1]

s’L[Q] +8 sL[Q] + 25L[Q] = 150

st +8s+25)L[Q] == |

150 1
s(s* +8s+25)

L[Q] =

Taking Inverse Laplace Transform on both sides,

0= "=
. Q L [3'(.!2 +B.\‘+25}]
<« By method of partial fraction

_,-1]s _ es+ss
Q=L L (s +85+25)

—61-1E] o 6(s + 4) Lt 24
Q= ot re Y Gy o)




Using shifting property
Q = 6 —6e *cos3t —8e *sin3t

And[ = f = 50e *sin3t

This is required expression for charge and current at
any timet > 0,



